已知方程x2+y2-2x+2my+m2-2m-2=0(m∈R).
(1)若方程表示圓,求實數(shù)m的取值范圍;
(2)若方程表示的圓C的圓心C(1,1),求經(jīng)過P(2,4)的圓C的切線方程;
(3)若直線x+y+t=0與(2)中的圓C交于A、B兩點,且△ABC是直角三角形,求實數(shù)t的值.
考點:直線和圓的方程的應用
專題:圓錐曲線中的最值與范圍問題
分析:(1)方程配方得(x-2)2+(y+m)2=3+2m,使方程表示圓,由此能求出實數(shù)m的取值范圍.
(2)圓C的圓心為(1,-m),得m=-1,所以圓C的方程為(x-1)2+(y-1)2=1,由此能求出過點P(2,4)的切線方程.
(3)由題意知,|CA|=|CB|=1,且∠ACB=90°,由此利用圓心C到直線x+y+t=0的距離為
2
2
,能求出實數(shù)t的值.
解答: 解:(1)方程配方得(x-2)2+(y+m)2=3+2m,…(1分)
使方程表示圓,則3+2m>0,m>-
3
2
,
故實數(shù)m的取值范圍是(-
3
2
,+∞).…(3分)
(2)由(1)得,圓C的圓心為(1,-m),得m=-1,…(4分)
所以圓C的方程為(x-1)2+(y-1)2=1,…(5分)
①過點P(2,4)且垂直于x軸的直線與圓C相切,
即x=2是圓的切線;…(6分)
②當切線不垂直于x軸時,
設切線方程為y-4=k(x-2),
即kx-y+4-2k=0,
|k-3|
k2+1
=1
,得k=
4
3
,
此時切線方程為y-4=
4
3
(x-2)
,即4x-3y+4=0,…(8分)
綜上,所求切線方程為x=2和4x-3y+4=0.…(9分)
(3)由題意知,|CA|=|CB|=1,且∠ACB=90°,
則圓心C到直線x+y+t=0的距離為
2
2
,即
|t+2|
2
=
2
2
.…(11分)
解得t=-3或t=-1.…(13分)
點評:本題考查實數(shù)的取值范圍的求法,考查圓的切線方程的求法,考查圓心到直線的距離的求法,解題時要認真審題,注意點到直線的距離公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

甲、乙二人參加知識競賽活動,組委會給他們準備了難、中、易三種題型,其中容易題兩道,分值各10分,中檔題一道,分值20分,難題一道,分值40分,二人需從4道題中隨機抽取一道題作答(所選題目可以相同)
(Ⅰ)求甲、乙所選題目分值不同的概率;
(Ⅱ)求甲所選題目分值大于乙所選題目分值的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)當a=1時,求函數(shù)y=
x
g(x)
的圖象上斜率為-2的切線方程;
(Ⅱ)當a<-2時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)當-3<a<-2時,若存在λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|>(m+ln3)a-2ln3成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[x]+|sin
πx
2
|,x∈[-1,1].其中[x]表示不超過x的最大整數(shù),例如[-3.5]=-4,[2.1]=2.
(Ⅰ)試判斷函數(shù)f(x)的奇偶性,并說明理由;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(0)=
 
          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2-4x+3=0在點P(2,1)處的切線方程為
 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�