lim
n→+∞
[na+
b-a
n
+
2(b-a)
n
+…+
n(b-a)
n
]
b-a
n
的值為( 。
分析:利用多項(xiàng)式乘法法則和等差數(shù)列求和公式把
lim
n→+∞
[na+
b-a
n
+
2(b-a)
n
+…+
n(b-a)
n
]
b-a
n
等價(jià)轉(zhuǎn)化為
lim
n→+∞
[ab-a2+
(b-a)2
n2
n 2+n
2
],再由極限的運(yùn)算法則求出結(jié)果.
解答:解:
lim
n→+∞
[na+
b-a
n
+
2(b-a)
n
+…+
n(b-a)
n
]
b-a
n

=
lim
n→+∞
[na+
(b-a)(1+2+3+…+n)
n
]•
b-a
n

=
lim
n→+∞
[ab-a2+
(b-a)2
n2
n 2+n
2
]
=ab-a2+
(b-a)2
2

=
1
2
(b2-a2)

故選C.
點(diǎn)評:本題考查極限及其運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等差數(shù)列求和公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a2=a+2(a為常數(shù)),Sn為{an}的前n項(xiàng)和,且Sn是nan與na的等差中項(xiàng).
(Ⅰ)求a1,a3
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若bn=3n且a=2,Tn為數(shù)列{an•bn}的前n項(xiàng)和,求
lim
n→∞
Tn-n•3n+1
bn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:y=2x(0≤x≤2)兩端分別為M、N,且NA⊥x軸于點(diǎn)A.把線段OA分成n等份,以每一段為邊作矩形,使與x軸平行的邊一個(gè)端點(diǎn)在C上,另一端點(diǎn)在C的下方(如右圖),設(shè)這n個(gè)矩形的面積之和為Sn,則
lim
n→∞
[(2n-3)(
n16
-1)Sn]
=
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)二模)如圖,曲線C:y=2x(0≤x≤2)兩端分別為M、N,且NA⊥x軸于點(diǎn)A.把線段OA分成n等份,以每一段為邊作矩形,使與x軸平行的邊一個(gè)端點(diǎn)在曲線C上,另一端點(diǎn)在曲線C的下方,設(shè)這n個(gè)矩形的面積之和為Sn,則
lim
n→∞
[(2n-3)(
n4
-1)Sn]
=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

lim
n→+∞
[na+
b-a
n
+
2(b-a)
n
+…+
n(b-a)
n
]
b-a
n
的值為(  )
A.a(chǎn)2-b2B.b2-a2C.
1
2
(b2-a2)
D.
1
2
(a2-b2)

查看答案和解析>>

同步練習(xí)冊答案