7.已知復(fù)數(shù)z滿足$\frac{1-i}{\overline{z}}$=i(其中i為虛數(shù)單位),則z2=(  )
A.2iB.-2iC.2+2iD.2-2i

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)z滿足$\frac{1-i}{\overline{z}}$=i(其中i為虛數(shù)單位),∴$\overline{z}$=$\frac{1-i}{i}$=$\frac{-i(1-i)}{-i•i}$=-i-1.
∴z=-1+i
則z2=(-1+i)2=-2i.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一圓錐的側(cè)面展開圖恰好是一個半徑為4的半圓,則圓錐的高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=3+2t\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程為ρsin2θ-16cosθ=0,直線l與曲線C交于A,B兩點,點P(1,3),
(1)求直線l的普通方程與曲線C的直角坐標方程;
(2)求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.a(chǎn)=log0.60.9,b=ln0.9,c=20.9,則a,b,c的大小順序是c>a>b(用大于號連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
證明:(1)PA∥平面EDB;
(2)PB⊥平面EFD;
(3)點F到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,圓柱有一個高6$\sqrt{2}$cm,體積為54$\sqrt{6}$cm3的內(nèi)接正三棱柱ABC-A1B1C1
求:(1)圓柱的體積;
(2)AC1與正三棱柱的側(cè)面ABB1A1所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知ρ:|1-$\frac{x-1}{3}$|≤2,q:(x-1+m)(x-1-m)≤0(m>0),若q是p充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B是求O的球面上兩點,且∠AOB=120°,C為球面上的動點,若三棱錐O-ABC體積的最大值為$\frac{16\sqrt{3}}{3}$,則求O的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知[x]表示不超過x的最大整數(shù),例如[π]=3
S1=$[{\sqrt{1}}]+[{\sqrt{2}}]+[{\sqrt{3}}]=3$
S2=$[{\sqrt{4}}]+[{\sqrt{5}}]+[{\sqrt{6}}]+[{\sqrt{7}}]+[{\sqrt{8}}]=10$
S3=$[{\sqrt{9}}]+[{\sqrt{10}}]+[{\sqrt{11}}]+[{\sqrt{12}}]+[{\sqrt{13}}]+[{\sqrt{14}}]+[{\sqrt{15}}]=21$,…
依此規(guī)律,那么S10=210.

查看答案和解析>>

同步練習(xí)冊答案