【題目】已知a,b,c∈R,若|acos2x+bsinx+c|≤1對x∈R成立,則|asinx+b|的最大值為

【答案】2
【解析】解:由題意,設(shè)t=sinx,t∈[﹣1,1],則|at2﹣bt﹣a﹣c|≤1恒成立, 不妨設(shè)t=1,則|b+c|≤1;t=0,則|a+c|≤1,t=﹣1,則|b﹣c|≤1
若a,b同號,則|asinx+b|的最大值為|a+b|=|a+c+b﹣c|≤|a+c|+|b﹣c|≤2;
若a,b異號,則|asinx+b|的最大值為|a﹣b|=|a+c﹣b﹣c|≤|a+c|+|b+c|≤2;
綜上所述,|asinx+b|的最大值為2,
所以答案是2.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a為實數(shù)且(2+ai)(a-2i)=-4i,則a=()
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是偶函數(shù),且x<0時,f(x)=3x﹣1,則x>0時,f(x)=(
A.3x﹣1
B.3x+1
C.﹣3x﹣1
D.﹣3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項,其中m項為0,m項為1,且對任意k≤2m,a1 , a2…ak中0的個數(shù)不少于1的個數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛、小紅等5個人排成一排照相合影,若小明與小剛相鄰,且小明與小紅不相鄰,則不同的排法有種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=x2+2x在點(1,3)處的切線方程是(
A.4x﹣y﹣1=0
B.3x﹣4y+1=0
C.3x﹣4y+1=0
D.4y﹣3x+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an} 中,a1=4,公比為q,前n項和為Sn , 若數(shù)列{Sn+2}也是等比數(shù)列,則q等于(
A.2
B.﹣2
C.3
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)唯一的一個零點同時在區(qū)間(0,16)、(0,8)、(0,4)、(0,2)內(nèi),那么下列命題中正確的是(
A.函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點
B.函數(shù)f(x)在區(qū)間(0,1)或(1,2)內(nèi)有零點
C.函數(shù)f(x)在區(qū)間[2,16)內(nèi)無零點
D.函數(shù)f(x)在區(qū)間(1,16)內(nèi)無零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線f(x)=ax+ex存在垂直于y軸的切線,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案