如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2米,水面寬4米,水位下降1米后,水面寬
 
米.
考點(diǎn):拋物線的應(yīng)用
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先建立直角坐標(biāo)系,將A點(diǎn)代入拋物線方程求得m,得到拋物線方程,再把y=-3代入拋物線方程求得x0進(jìn)而得到答案.
解答: 解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,
將A(2,-2)代入x2=my,
得m=-2
∴x2=-2y,代入B(x0,-3)得x0=
6
,
故水面寬為2
6
m.
故答案為:2
6
點(diǎn)評(píng):本題主要考查拋物線的應(yīng)用.考查了學(xué)生利用拋物線解決實(shí)際問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-px+1
(1)若當(dāng)x=2時(shí),f(x)取得極值,求p的值,并求f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x>0,恒有f(x)≤0,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求直線PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù) f(x)對(duì)于任意的x,y∈R,都有f(x+y)=f(x)+f(y)且x>0時(shí)f(x)<0,f(1)=-2.
(1)判斷f(x)的奇偶性,并證明.
(2)證明f(x)在R上是減函數(shù),并求出x∈[-3,3]時(shí),f(x)的最大值及最小值.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:|x-3|-|x+1|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,|
AB
|=3,|
AC
|=1,l為BC的垂直平分線且交BC于點(diǎn)D,E為l上異于D的任意一點(diǎn),F(xiàn)為線段AD上的任意一點(diǎn).
(1)求
AD
•(
AB
-
AC
)的值;
(2)判斷
AE
•(
AB
-
AC
)的值是否為一常數(shù),并說(shuō)明理由;
(3)若AC⊥BC,求
AF
•(
FB
+
FC
)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan2010°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AB=
2
,AA1=2,如圖.
(1)當(dāng)點(diǎn)P在BB1上運(yùn)動(dòng)時(shí)(點(diǎn)P∈BB1,且異于B,B1),設(shè)PA∩BA1=M,PC∩BC1=N,求證:MN∥平面ABCD.
(2)當(dāng)點(diǎn)P是BB1的中點(diǎn)時(shí),求異面直線PC與AD1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:A={x||x-a|<4},命題q:B={x|(x-2)(3-x)>0},若?p是?q的充分條件,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案