已知函數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
(1)當(dāng)時,有極小值(2)(3)
【解析】
試題分析:(1)當(dāng)時,,令0,得,
且當(dāng),
故,當(dāng). ……4分
(2)∵,∴.
∵在上是增函數(shù),
∴≥0在上恒成立,即≤在上恒成立.
令,則≤.
∵在上是增函數(shù),∴.
∴.所以實(shí)數(shù)的取值范圍為. ……10分
(3)由(1)得,.
①若,則,即在上恒成立,此時在上是增函數(shù).
所以,解得(舍去).
②若,令,得.當(dāng)時,,所以在上是減函數(shù),當(dāng)時,,所以在上是增函數(shù).
所以,解得(舍去).
③若,則,即在上恒成立,此時在上是減函數(shù).
所以,所以.
綜上所述,. ……16分
考點(diǎn):本小題主要考查利用導(dǎo)數(shù)解決極值、最值和恒成立問題,考查學(xué)生分類討論思想的應(yīng)用和運(yùn)算求解能力.
點(diǎn)評:導(dǎo)數(shù)是研究函數(shù)的工具,千萬不要忘記函數(shù)的定義域,另外恒成立問題通常轉(zhuǎn)化為最值問題解決,還要注意分類討論時要不重不漏.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實(shí)根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實(shí)根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com