已知P(x,y)為橢圓上一點(diǎn),F為橢圓C的右焦點(diǎn),若點(diǎn)M滿足,則的最小值為(      )
A.B.3C.D.1
A

試題分析:由橢圓上任一點(diǎn)P(x,y)滿足的點(diǎn)M是唯一的.由于,要求的最小值又,即需求的最小值,由題意可知橢圓上的點(diǎn)到焦點(diǎn)距離最短距離為.即為2.所以的最小值為.故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知線段,的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
(2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左、右焦點(diǎn)分別、焦距為,且與雙曲線共頂點(diǎn).為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn)
(1)求橢圓的方程;
(2)若點(diǎn)的坐標(biāo)為,求過、三點(diǎn)的圓的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,且離心率為
(1)求橢圓方程;
(2)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓、是橢圓的左右焦點(diǎn),且橢圓經(jīng)過點(diǎn).
(1)求該橢圓方程;
(2)過點(diǎn)且傾斜角等于的直線,交橢圓于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左右焦點(diǎn)為、,一直線過交橢圓于、兩點(diǎn),則的周長為   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知(4,2)是直線l被橢圓所截得的線段的中點(diǎn),則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

同步練習(xí)冊(cè)答案