.(本題滿分12分)
給定橢圓>>0,稱圓心在原點(diǎn),半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(1)求橢圓的方程及其“伴隨圓”方程;
(2)若傾斜角為的直線與橢圓C只有一個(gè)公共點(diǎn),且與橢圓的“伴隨圓”相交于M、N兩點(diǎn),求弦MN的長;
(3)點(diǎn)是橢圓的“伴隨圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,使得與橢圓都只有一個(gè)公共點(diǎn),求證:。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413474878122554/SYS201205241350486562483566_DA.files/image001.png">,所以
所以橢圓的方程為,伴隨圓方程……………2分
(2)設(shè)直線的方程,由得
由 得
圓心到直線的距離為所以………………………………………6分
(3)①當(dāng)中有一條無斜率時(shí),不妨設(shè)無斜率,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413474878122554/SYS201205241350486562483566_DA.files/image014.png">與橢圓只有一個(gè)公共點(diǎn),則其方程為或,
當(dāng)方程為時(shí),此時(shí)與伴隨圓交于點(diǎn)
此時(shí)經(jīng)過點(diǎn)(或且與橢圓只有一個(gè)公共點(diǎn)的直線是
(或,即為(或,顯然直線垂直;
同理可證方程為時(shí),直線垂直……………………7分
②當(dāng)都有斜率時(shí),設(shè)點(diǎn)其中,
設(shè)經(jīng)過點(diǎn)與橢圓只有一個(gè)公共點(diǎn)的直線為,
由,消去得到,
即,……………8分
,
經(jīng)過化簡得到:,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413474878122554/SYS201205241350486562483566_DA.files/image024.png">,所以有,…………………………10分
設(shè)的斜率分別為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413474878122554/SYS201205241350486562483566_DA.files/image013.png">與橢圓都只有一個(gè)公共點(diǎn),
所以滿足方程,
因而,即垂直.………………………………………………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com