若向量
a
,
b
滿足|
a
|=
2
,(
a
+
b
)⊥
a
,(2
a
+
b
)⊥
b
,則|
b
|=( 。
A、2B、3C、4D、1
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:運用向量的垂直的條件,即為數(shù)量積為0,再由向量的平方即為模的平方,即可得到.
解答: 解:由于|
a
|=
2
,(
a
+
b
)⊥
a
,
則(
a
+
b
a
=0,即有
a
2
+
a
b
=0,
則有
a
b
=-2,
由于(2
a
+
b
)⊥
b
,
則2
a
b
+
b
2
=0,
即|
b
|2=-2
a
b
=4,
則|
b
|=2.
故選A.
點評:本題考查平面向量的數(shù)量積的性質(zhì),考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直接l過拋物線C的焦點,且與C的對稱垂直,l與C交于A,B兩點,P為C的準(zhǔn)線上一點,若△ABP的面積為36,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰直角三角形的兩個銳角頂點為A(2,0),B(0,4),則直角頂點C的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實數(shù)a使得g(x)=ln(1-
2a
x+2
)為奇函數(shù)同時使得h(x)=x(
1
a
+
1
ax-1
)為偶函數(shù),若存在,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A、B為銳角且B<A,sinA=
5
5
,sin2B=
3
5

(1)求角C的值;
(2)求證:5cosAcos(A+3B)=2sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,an,1,2Sn成等差數(shù)列.求a1,a2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+k•x2+3x-2k,g(x)=(3-k2)•x
(1)當(dāng)x∈(1,+∞)時,討論函數(shù)f(x)是否存在極值;
(2)若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|lgx<0},N={y|y=2x-1},則M∩N等于( 。
A、(-1,1)
B、(0,1)
C、(-1,0)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα,cosα是方程3x2+6kx+2k+1=0的兩個根,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案