【題目】下列四個(gè)命題中的真命題是(  )
A.
B.
C.使x5<1
D.

【答案】C
【解析】由于x∈R,都有x2≥0,因而有x2+3≥3,所以命題“x∈R,x2+3<0”為假命題;由題0∈N,當(dāng)x=0時(shí),x2≥1不成立,所以命題:x∈N,x2≥1”是假命題;由于-1∈Z , 當(dāng)x=-1時(shí),x5<1,所以命題“xZ , 使x5<1”為真命題;由于使x3=3成立的數(shù)只有± ,而它們都不是有理數(shù),因此沒(méi)有任何一個(gè)有理數(shù)的平方能等于3,所以命題“xQx3=3”是假命題.故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|lgx|,且0<a<b<c時(shí),有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地教育研究中心為了調(diào)查該地師生對(duì)“高考使用全國(guó)統(tǒng)一命題的試卷”這一看法,對(duì)該市區(qū)部分師生進(jìn)行調(diào)查,先將調(diào)查結(jié)果統(tǒng)計(jì)如下:

贊成

反對(duì)

總計(jì)

教師

120

學(xué)生

40

總計(jì)

280

120

(1)請(qǐng)將表格補(bǔ)充完整,若該地區(qū)共有教師30000人,以頻率為概率,試估計(jì)該地區(qū)教師反對(duì)“高考使用全國(guó)統(tǒng)一命題的試卷”這一看法的人數(shù);

(2)按照分層抽樣從“反對(duì)”的人中先抽取6人,再?gòu)闹须S機(jī)選出3人進(jìn)行深入調(diào)研,求深入調(diào)研中恰有1名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知條件p:-1≤x≤10,qx2-4x+4-m2≤0(m>0)不變,若 pq的必要而不充分條件,如何求實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2017年上半年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)

(1)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達(dá)到一級(jí)的概率;

(2)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;

(3)以這15天的PM2.5的日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,(一年按360天來(lái)計(jì)算),則一年中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)為二次函數(shù),﹣1和3是方程f(x)﹣x﹣4=0的兩根,f(0)=1
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上,不等式f(x)>2x+m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元(如圖).

(1)分別寫出兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案