(2012•閘北區(qū)二模)設(shè)定點A(-1,-2)、B(1,2),動點P(x,y)滿足:|
PA
|-|
PB
|=2
5
,則動點P的軌跡方程為
2x-y=0(x≥1)
2x-y=0(x≥1)
分析:利用兩點間的距離公式,計算|AB|,利用條件可得P在AB的延長線上,從而可得動點P的軌跡方程.
解答:解:∵A(-1,-2)、B(1,2),
∴|AB|=
(1+1)2+(2+2)2
=2
5

|
PA
|-|
PB
|=2
5

|
PA
|-|
PB
|
=|AB|
∴P在AB的延長線上
直線AB的方程為
y-2
-2-2
=
x-1
-1-1
,即2x-y=0
∴動點P的軌跡方程為2x-y=0(x≥1)
故答案為:2x-y=0(x≥1)
點評:本題考查軌跡方程,考查學生的計算能力,確定P在AB的延長線上是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)若關(guān)于x的不等式ax+b>2(x+1)的解集為{x|x<1},則b的取值范圍為
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲線C:y2=
1
2
x(y≥0)
上的點,A1(a1,0),A2(a2,0),…,An(an,0),…是x軸正半軸上的點,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均為斜邊在x軸上的等腰直角三角形(A0為坐標原點).
(1)寫出an-1、an和xn之間的等量關(guān)系,以及an-1、an和yn之間的等量關(guān)系;
(2)猜測并證明數(shù)列{an}的通項公式;
(3)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求實常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)設(shè)復數(shù)z滿足i(z-1)=3-z,其中i為虛數(shù)單位,則|z|=
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)計算 
lim
n→∞
[(
2
3
)
n
+
1-n
4+n
]
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)設(shè)f(x)=(x-1)2(x≤1),則f-1(4)=
-1
-1

查看答案和解析>>

同步練習冊答案