【題目】已知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)已知,,設(shè)函數(shù)的最大值為,求證:.
【答案】(Ⅰ)見解析;(Ⅱ)證明見解析.
【解析】
(Ⅰ)求得函數(shù)的導(dǎo)數(shù),分和兩種情況討論,即可求得函數(shù)的單調(diào)區(qū)間;
(Ⅱ)由(Ⅰ)可知在上單調(diào)遞增,結(jié)合零點(diǎn)的存在定理,得到存在唯一,使得,進(jìn)而得出的單調(diào)性和最值,再結(jié)合函數(shù)的單調(diào)性,即可求解.
(Ⅰ)由題意,函數(shù),則,
①當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),,
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ)依題意得,則,
因?yàn)楫?dāng)時(shí),由(Ⅰ)可知在上單調(diào)遞增,
又因?yàn)?/span>,
所以存在唯一,使得.
當(dāng)時(shí),,,在上單調(diào)遞增;
當(dāng)時(shí),,,在上單調(diào)遞減;
因此在處取得最大值,
且最大值為,
設(shè),則,
所以在上遞減,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)求過點(diǎn)且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)對(duì)x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實(shí)數(shù)m的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù)在和處取得極值,且在處的切線方程為.
(1)若函數(shù)的圖象上有兩條與軸平行的切線,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)與在上有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解家長對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長的滿意度評(píng)分,其頻數(shù)分布表如下:
滿意度評(píng)分分組 | 合計(jì) | |||||
高一 | 1 | 3 | 6 | 6 | 4 | 20 |
高二 | 2 | 6 | 5 | 5 | 2 | 20 |
根據(jù)評(píng)分,將家長的滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 評(píng)分70分 | 70評(píng)分90 | 評(píng)分90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
假設(shè)兩個(gè)年級(jí)家長的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級(jí)高于高二家長的滿意度等級(jí)”,則事件發(fā)生的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2分別是雙曲線C:的左、右焦點(diǎn),若F2關(guān)于漸近線的對(duì)稱點(diǎn)恰落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線C的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 (a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為,點(diǎn)A的坐標(biāo)為,且.
(I)求橢圓的方程;
(II)設(shè)直線l: 與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若 (O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com