已知:圓過(guò)橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線與圓相切 ,與橢圓相交于A,B兩點(diǎn)記 

(Ⅰ)求橢圓的方程;

(Ⅱ)求的取值范圍;

(Ⅲ)求的面積S的取值范圍.

 

【答案】

(1)

(2)

(3)

【解析】

試題分析:解:(Ⅰ)由題意知2c="2,c=1" , 因?yàn)閳A與橢圓有且只有兩個(gè)公共點(diǎn),從而b=1.故a=

所求橢圓方程為           3分

(Ⅱ)因?yàn)橹本l:y=kx+m與圓相切

所以原點(diǎn)O到直線l的距離=1,即:m    5分

又由,(

設(shè)A(),B(),則     7分

,由,故,

           9分

(III)

,由,得:           11分

,所以:        12分

考點(diǎn):直線與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了橢圓方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2=
c2
4
(c是橢圓的焦半距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過(guò)兩點(diǎn)(1,
4
2
3
)
、(
3
3
2
,1)
,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求
OP
OE
的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題15分)

已知橢圓C:,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G: 是橢圓的焦半距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;

(2)當(dāng)為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));

(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市姜堰市蔣垛中學(xué)高三(下)3月綜合測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過(guò)兩點(diǎn),求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省揚(yáng)州市高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

已知橢圓C:,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案