1.某人經(jīng)營一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元可購買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)人黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng),顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、1元.若經(jīng)營者將顧客摸出的3個(gè)球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(1)請(qǐng)寫出一至四等獎(jiǎng)分別對(duì)應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個(gè)游戲的經(jīng)營中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

分析 (1)分別求出A、B、C、D、E的概率,由此能求出一至四等獎(jiǎng)分別對(duì)應(yīng)的類別.
(Ⅱ)設(shè)顧客進(jìn)行一次游戲營者可盈利x元,利用離散型隨機(jī)離題分布列的性質(zhì)和數(shù)學(xué)期望能求出a的最大值.
(Ⅲ)a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),分別求出他中一等獎(jiǎng)、二等獎(jiǎng)、中三等金、中四等獎(jiǎng)的概率,由此能求出他領(lǐng)取的獎(jiǎng)金的平均值.

解答 解:P(A)=$\frac{{C}_{1}^{1}{C}_{3}^{2}}{{C}_{10}^{3}}$=$\frac{3}{120}$,
P(B)=$\frac{{C}_{3}^{3}}{{C}_{10}^{3}}$=$\frac{1}{120}$,
P(C)=$\frac{{C}_{6}^{1}({C}_{1}^{1}{C}_{3}^{1}+{C}_{3}^{2})}{{C}_{10}^{3}}$=$\frac{36}{120}$,
P(D)=$\frac{{C}_{6}^{2}({C}_{1}^{1}+{C}_{2}^{1})}{{C}_{10}^{3}}$=$\frac{60}{120}$,
P(E)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{20}{120}$,
∵P(B)<P(A)<P(E)<P(C)<P(D).
按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次,
∴一至四等獎(jiǎng)分別對(duì)應(yīng)的類別是B、A、E、C.
(Ⅱ)設(shè)顧客進(jìn)行一次游戲營者可盈利x元,則:

 X-(a-2)-8-3 1 2
 P $\frac{1}{120}$ $\frac{3}{120}$ $\frac{20}{120}$ $\frac{36}{120}$ $\frac{60}{120}$
∴$\frac{1}{{C}_{10}^{2}}$(-a+2-24-60+36+120)≥0,
∴a≤74,即a的最大值為74元.
(Ⅲ)a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),
中一等獎(jiǎng)的概率p1=$\frac{{C}_{2}^{2}}{{C}_{9}^{2}}$=$\frac{1}{36}$,中二等獎(jiǎng)的概率p2=$\frac{{C}_{2}^{1}{C}_{1}^{1}}{{C}_{9}^{2}}$=$\frac{2}{36}$,
中三等獎(jiǎng)的概率p3=0,中四等獎(jiǎng)的概率${p}_{4}=\frac{{C}_{6}^{1}({C}_{2}^{1}+{C}_{2}^{2})}{{C}_{9}^{2}}=\frac{18}{36}$,
∴他領(lǐng)取的獎(jiǎng)金的平均值E(X)=$\frac{1}{36}$(50×1+10×2+0+1×18)=$\frac{22}{9}$元.
∴他領(lǐng)取的獎(jiǎng)金的平均值為$\frac{22}{9}$.

點(diǎn)評(píng) 本題考查概率的求法及應(yīng)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法及應(yīng)用,在歷年高考中都是必考題型,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3),則函數(shù)f(x)的單調(diào)遞減區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在直角坐標(biāo)系x0y中,已知點(diǎn)A(0,1),點(diǎn)B(-3,4),若點(diǎn)C在∠AOB的平分線上且|OC|=$\sqrt{10}$,則向量$\overrightarrow{OC}$的坐標(biāo)是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,A-BCD是一個(gè)不透明的三棱錐木塊,點(diǎn)E,F(xiàn),G分別在AB,BC,CD上,且F,G是BC,CD的中點(diǎn),BE:EA=1:2,
(1)求證:FG∥平面BAD;
(2)設(shè)過點(diǎn)E,F(xiàn),G的平面交平面ABD于直線l.請(qǐng)作出直線l,寫出作法,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}滿足:an+1=4+an,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn為an與an+1的等比中項(xiàng),求數(shù)列{$\frac{1}{_{n}^{2}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知θ是銳角,且tanθ=$\sqrt{2}-1$,數(shù)列${a_{n+1}}=2{a_n}tan2θ+sin(2θ+\frac{π}{4})-1$,數(shù)列{an}的首項(xiàng)a1=1,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x2-$\frac{a}{x}$(a∈R),則下列結(jié)論正確的是( 。
A.?a∈R,f(x)是偶函數(shù)B.?a∈R,f(x)是奇函數(shù)
C.?a∈(0,+∞),f(x)在(-∞,0)上是增函數(shù)D.?a∈(0,+∞),f(x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i是虛數(shù)單位,且$z={(\frac{1-i}{1+i})^{2016}}$+i的共軛復(fù)數(shù)為$\overline{z}$,則z$•\overline{z}$等于(  )
A.2B.1C.0D.-l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(4cosx,$\frac{1}{3}$),$\overrightarrow$=(sin(x+$\frac{π}{6}$),-1),且$\overrightarrow{a}•\overrightarrow$=0,則sin(2x+$\frac{7π}{6}$)=( 。
A.-$\frac{2\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案