13.已知集合A={x∈Z|x≥2},B={1,2,3},則A∩B=( 。
A.B.{2}C.{2,3}D.{x|2≤x<3}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={x∈Z|x≥2},B={1,2,3},
∴A∩B={2,3},
故選:C.≡

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若對任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.四棱錐P-ABCD中,△PCD為正三角形,底面邊長為1的正方形,平面PCD⊥平面ABCD,M為底面內(nèi)一動點,當$MA=\sqrt{2}PM$時,點M在底面正方形內(nèi)(包括邊界)的軌跡為(  )
A.一個點B.線段C.D.圓弧

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某風險投資公司選擇了三個投資項目,設(shè)每個項目成功的概率都為$\frac{1}{2}$,且相互之間設(shè)有影響,若每個項目成功都獲利20萬元,若每個項目失敗都虧損5萬元,該公司三個投資項目獲利的期望為( 。
A.30萬元B.22.5萬元C.10萬元D.7.5萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1-an}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{1}{3}$x${\;}^{3}-\frac{1}{2}m{x}^{2}+4x-3$在區(qū)間[1,2]上是增函數(shù),則實數(shù)m的取值范圍為( 。
A.4≤m≤5B.2≤m≤4C.m≤2D.m≤4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項和為Sn,且S3=-9,a4+a6=a5
(1)求{an}的通項公式;
(2)求數(shù)列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f'(x)-f(x)=x•ex,且$f(0)=\frac{1}{2}$,則$\frac{{x•{e^x}}}{f(x)}$的最大值為( 。
A.1B.-$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,底面ABCD是棱長為2的正方形,側(cè)棱$SD=2,SA=2\sqrt{2}$,∠SDC=120°.
(Ⅰ)求證:AD⊥面SDC;
(Ⅱ)求棱SB與面SDC所成角的大。

查看答案和解析>>

同步練習冊答案