(理)已知函數(shù)f(x)=2x+1,x∈R.規(guī)定:給定一個實數(shù)x0,賦值x1=f(x0),若x1≤255,則繼續(xù)賦值x2=f(x1) …,以此類推,若xn-1≤255,則xn=f(xn-1),否則停止賦值,如果得到xn后停止,則稱賦值了n次(n∈N*).已知賦值k次后該過程停止,則x0的取值范圍是


  1. A.
    (2k-9,2k-8]
  2. B.
    (2k-8-1,2k-9-1]
  3. C.
    (28-k-1,29-k-1]
  4. D.
    (27-k-1,28-k-1]
C
分析:由已知中給定一個實數(shù)x0,賦值x1=f(x1),若x1≤255,則繼續(xù)賦值x2=f(x1) …,以此類推,若xn-1≤255,則xn=f(xn-1),否則停止賦值,如果得到xn后停止,已知賦值k次后該過程停止,我們易得x0的滿足xk=2kx0+2k-1+…+1≤255,xk+1=2k+1x0+2k+…+1>255,解不等式組即可得到答案.
解答:x1=f(x0)=2x0+1,
x2=22x0+2+1

xk=2kx0+2k-1+…+1
xk+1=2k+1x0+2k+…+1
若賦值k次后該過程停止,則x0滿足
xk=2kx0+2k-1+…+1≤255
xk+1=2k+1x0+2k+…+1>255
解得X0∈(28-k-1,29-k-1](k∈N*).
故選C
點評:本題考查的知識點是推理與證明,其中根據(jù)已知條件中的定義,得到x0的滿足的不等式組,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理) 已知函數(shù)f(x)=x-ln(x+a)在x=1處取得極值.
(1)求實數(shù)a的值;
(2)若關(guān)于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對稱軸方程與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=sinx+ln(1+x).
(I)求證:
1
n
<f(
1
n
)<
2
n
(n∈N+);
(II)如果對任何x≥0,都有f(x)≤ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=x2+bsinx-2,(b∈R),且對任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.
(III)討論函數(shù)h(x)=ln(1+x2)-
12
f(x)-k的零點個數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(理)已知函數(shù)f(x)=2x+1,x∈R.規(guī)定:給定一個實數(shù)x0,賦值x1=f(x0),若x1≤255,則繼續(xù)賦值x2=f(x1) …,以此類推,若xn-1≤255,則xn=f(xn-1),否則停止賦值,如果得到xn后停止,則稱賦值了n次(n∈N*).已知賦值k次后該過程停止,則x0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案