如圖所示,設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過F的直線交拋物線于A,B兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BC∥x軸,證明直線AC經(jīng)過原點(diǎn)O.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為y=
1
8
x2+b
,如圖所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G,已知拋物線在點(diǎn)G處的切線經(jīng)過橢圓的右焦點(diǎn)F1
(1)求點(diǎn)G和點(diǎn)F1的坐標(biāo)(用b表示);
(2)求滿足條件的橢圓方程和拋物線方程;
(3)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)F(
p
2
,0)(p>0)
,點(diǎn)P為拋物線C:y2=2px上的動(dòng)點(diǎn),P到y(tǒng)軸的距離PN滿足:|PF|=|PN|+
1
2
,直線l過點(diǎn)F,與拋物線交于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)設(shè)點(diǎn)Q(a,0)(a<0),若直線l垂直于x軸,且向量
QA
QB
的夾角為
π
3
,求a的值;
(3)設(shè)M為線段AB的中點(diǎn),求點(diǎn)M到直線y=x+1距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為x2=8(y-b).如圖所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G,已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)F1
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)如圖所示,已知平面直角坐標(biāo)系xOy,拋物線y=-x2+bx+c過點(diǎn)A(4,0)、B(1,3).
(1)求該拋物線的表達(dá)式,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)記該拋物線的對(duì)稱軸為直線l,設(shè)拋物線上的點(diǎn)P(m,n)在第四象限,點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)為F,若四邊形OAPF的面積為20,求m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2010-2011學(xué)年四川省高三四月月考文科數(shù)學(xué)卷 題型:解答題

如圖所示,設(shè)橢圓C1:的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖。若拋物線C2:與y軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn)

(1)求橢圓C1的方程;

(2)設(shè)M),N為拋物線C2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求面積的最大值。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案