【題目】在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若點(diǎn)是圓上一動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.

【答案】1;(2

【解析】

1)設(shè),根據(jù)題意可得點(diǎn)的軌跡方程滿足的等式,化簡(jiǎn)即可求得動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)出切線的斜率分別為,切點(diǎn),,點(diǎn),則可得過點(diǎn)的拋物線的切線方程為,聯(lián)立拋物線方程并化簡(jiǎn),由相切時(shí)可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點(diǎn)滿足的方程可得的取值范圍,即可求得的范圍.

1)設(shè)點(diǎn),

∵點(diǎn)到直線的距離等于,

,化簡(jiǎn)得,

∴動(dòng)點(diǎn)的軌跡的方程為.

2)由題意可知,的斜率都存在,分別設(shè)為,切點(diǎn),

設(shè)點(diǎn),過點(diǎn)的拋物線的切線方程為,

聯(lián)立,化簡(jiǎn)可得

,即,

.

,求得導(dǎo)函數(shù),

,,

,

因?yàn)辄c(diǎn)滿足

由圓的性質(zhì)可得,

,即直線斜率的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求過點(diǎn)的切線方程;

(2)當(dāng)時(shí),求函數(shù)的最大值;

(3)證明:當(dāng)時(shí),不等式對(duì)任意均成立(其中為自然對(duì)數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某景區(qū)是一個(gè)以為圓心,半徑為的圓形區(qū)域,道路,角,且均和景區(qū)邊界相切,現(xiàn)要修一條與景區(qū)相切的觀光木棧道,點(diǎn)分別在上,修建的木棧道與道路圍成的三角地塊.

1)求修建的木棧道與道路,圍成的三角地塊面積的最小值;

2)若景區(qū)中心與木棧道段連線的.

①將木棧道的長(zhǎng)度表示為的函數(shù),并指定定義域;

②求出木棧道的長(zhǎng)度最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,

f(1x)f(1x),當(dāng)-1≤x≤0時(shí),f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[1,2]上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知為拋物線上一點(diǎn),斜率分別為,的直線PA,PB分別交拋物線于點(diǎn)AB(不與點(diǎn)P重合).

1)證明:直線AB的斜率為定值;

2)若△ABP的內(nèi)切圓半徑為.

i)求△ABP的周長(zhǎng)(用k表示);

ii)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰梯形,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2.

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中, 平面的中點(diǎn) 上的點(diǎn)且上的高.

(1)證明: 平面;

2)若,求三棱錐的體積;

3)在線段上是否存在這樣一點(diǎn)使得平面?若存在,說(shuō)出點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,設(shè),所成的角是,繞直線旋轉(zhuǎn)至,則在所有旋轉(zhuǎn)過程中,關(guān)于所成的角的說(shuō)法正確的是( )

A.當(dāng)時(shí),B.當(dāng)時(shí),

C.當(dāng)時(shí),D.當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)有相同的公切線,則實(shí)數(shù)a的取值范圍為_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案