【題目】如圖,是一塊半徑為4米的圓形鐵皮,現(xiàn)打算利用這塊鐵皮做一個圓柱形油桶.具體做法是從中剪裁出兩塊全等的圓形鐵皮與做圓柱的底面,剪裁出一個矩形做圓柱的側(cè)面(接縫忽略不計),為圓柱的一條母線,點在上,點在的一條直徑上,,分別與直線、相切,都與內(nèi)切.
(1)求圓形鐵皮半徑的取值范圍;
(2)請確定圓形鐵皮與半徑的值,使得油桶的體積最大.(不取近似值)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進行自主招生測試,報考學(xué)生有500人,其中男生300人,女生200人,為了研究學(xué)生的成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們測試的分數(shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分數(shù)分成4組:,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖可以估計女生測試成績的平均值為103.5,請你估計男生測試成績的平均值,由此推斷男、女生測試成績的平均水平的高低;
(Ⅱ)若規(guī)定分數(shù)不小于110分的學(xué)生為“優(yōu)秀生”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有的把握認為“優(yōu)秀生與性別有關(guān)”?
優(yōu)秀生 | 非優(yōu)秀生 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式:,.
參考數(shù)據(jù):
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班舉行數(shù)學(xué)知識競賽,參賽學(xué)生的競賽得分統(tǒng)計結(jié)果如下表:
班級 | 參賽人數(shù) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 45 | 83 | 86 | 85 | 82 |
乙 | 45 | 83 | 84 | 85 | 133 |
某同學(xué)分析上表后得到如下結(jié)論:
①甲、乙兩班學(xué)生的平均成績相同;
②乙班優(yōu)秀的人數(shù)少于甲班優(yōu)秀的人數(shù)(競賽得分分為優(yōu)秀);
③甲、乙兩班成績?yōu)?/span>85分的學(xué)生人數(shù)比成績?yōu)槠渌档膶W(xué)生人數(shù)多;
④乙班成績波動比甲班小.
其中正確結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側(cè)面到達點,其距離最短時在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時針旋轉(zhuǎn)后,邊與曲線相交于點.
(1)求曲線的長度;
(2)當時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,且,當時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)f(x)的圖象在點(2,f(2))處的切線方程為9x﹣y+b=0,求實數(shù)a,b的值;
(2)若a≤0,求f(x)的單調(diào)減區(qū)間;
(3)對一切實數(shù)a∈(0,1),求f(x)的極小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人投籃命中的概率分別為與,各自相互獨立.現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結(jié)束后甲的進球數(shù)比乙的進球數(shù)多1的概率;
(2)設(shè)表示比賽結(jié)束后甲、乙兩人進球數(shù)的差的絕對值,求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com