【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)證明 (2)見(jiàn)解析
【解析】
(1)推導(dǎo)出AB⊥AC,AP⊥AC,AB⊥PC,從而AB⊥平面PAC,進(jìn)而PA⊥AB,由此能證明PA⊥平面ABCD;
(2)以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出在線段PD上,存在一點(diǎn)M,使得二面角M﹣AC﹣D的大小為60°,4﹣2.
(1)∵在底面中,,
且
∴,∴
又∵,,平面,平面
∴平面 又∵平面 ∴
∵, ∴
又∵,,平面,平面
∴平面
(2)方法一:在線段上取點(diǎn),使 則
又由(1)得平面 ∴平面
又∵平面 ∴ 作于
又∵,平面,平面
∴平面 又∵平面 ∴
又∵ ∴是二面角的一個(gè)平面角
設(shè) 則,
這樣,二面角的大小為
即
即
∴滿足要求的點(diǎn)存在,且
方法二:取的中點(diǎn),則、、三條直線兩兩垂直
∴可以分別以直線、、為、、軸建立空間直角坐標(biāo)系
且由(1)知是平面的一個(gè)法向量
設(shè) 則,
∴,
設(shè)是平面的一個(gè)法向量
則 ∴
令,則,它背向二面角
又∵平面的法向量,它指向二面角
這樣,二面角的大小為
即
即
∴滿足要求的點(diǎn)存在,且
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)時(shí),實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)滿足,現(xiàn)給出下列命題:①函數(shù)是以2為周期的周期函數(shù);②函數(shù)是以4為周期的周期函數(shù);③函數(shù)為奇函數(shù);④函數(shù)為偶函數(shù),則其中真命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)書(shū)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即.已知滿足 .且,則用以上給出的公式可求得的面積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,且PC=BC=2AD=2CD=2,.
(1)平面;
(2)已知點(diǎn)在線段上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn).的外接圓與拋物線的準(zhǔn)線相切,外接圓的周長(zhǎng)為.
(1)求拋物線的方程;
(2)已知不與軸垂直的動(dòng)直線與拋物線有且只有一個(gè)公共點(diǎn),且分別交拋物線的準(zhǔn)線和直線于、兩點(diǎn),試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核. 記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了名學(xué)生的考核成績(jī),并作成如下莖葉圖:
5 | 0 | 1 | 1 | 6 | ||||
6 | 0 | 1 | 4 | 3 | 3 | 5 | 8 | |
7 | 2 | 3 | 7 | 6 | 8 | 7 | 1 | 7 |
8 | 1 | 1 | 4 | 5 | 2 | 9 | ||
9 | 0 | 2 | 1 | 3 | 0 |
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核成績(jī)?yōu)閮?yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間內(nèi)的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效. 請(qǐng)你根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm.
(I)按下列要求寫(xiě)出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com