(12分)已知橢圓的中心為直角坐標(biāo)系的原點,焦點在軸上,它的一個項點到兩個焦點的距離分別是7和1.
(I)求橢圓的方程;
(II)若為橢圓的動點,為過且垂直于軸的直線上的點,(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線.
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為直角坐標(biāo)系的原點,焦點在軸上,它的一個頂點到兩個
焦點的距離分別是7和1
(1)求橢圓的方程‘
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,
(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線。查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為直角坐標(biāo)系的原點,焦點在軸上,它的一個項點到兩個焦點的距離分別是7和1
(1)求橢圓的方程‘
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,
(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河北衡水中學(xué)高二上第四次調(diào)研考試文數(shù)學(xué)卷(解析版) 題型:解答題
已知橢圓的中心為直角坐標(biāo)系的原點,焦點在軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,(為橢圓的離心率),求點的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆陜西省西安市高二上學(xué)期期末考試理科數(shù)學(xué)卷(解析版) 題型:解答題
已知橢圓的中心為直角坐標(biāo)系的原點,焦點在軸上,它的一個頂點到兩個焦點的距離分別是7和1
(1)求橢圓的方程
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com