2.求函數(shù)y=log(x-1)(x+1)的定義域.

分析 函數(shù)y=log(x-1)(x+1)有意義,可得x+1>0,且x-1>0,x-1≠1,解不等式即可得到所求函數(shù)的定義域.

解答 解:函數(shù)y=log(x-1)(x+1)有意義,可得x+1>0,且x-1>0,x-1≠1,
解得x>-1且x>1且x≠2,
則x>1且x≠2,
即有函數(shù)的定義域?yàn)閧x|x>1且x≠2}.

點(diǎn)評(píng) 本題考查函數(shù)的定義域,注意對(duì)數(shù)的真數(shù)大于0,且底數(shù)大于0,不等于1,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若正方體的外接球的表面積為6π,則該正方體的表面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(n)=2+22+…+2n,那么f(4)等于( 。
A.15B.30C.55D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示為函數(shù)f(x)=2sin(ωx+φ)(其中ω>0,|φ|<π)的部分圖象,則( 。
A.ω=$\frac{13}{5}$,φ=$\frac{5π}{6}$B.ω=$\frac{11}{5}$,φ=$\frac{π}{6}$C.ω=$\frac{7}{5}$,φ=$\frac{5π}{6}$D.ω=$\frac{23}{5}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若函數(shù)f(x)=$\frac{a+1}{2}{x^2}$-ax-lnx.
(1)求函數(shù)f(x)的極值;
(2)求證:x-$\frac{lnx}{x}$≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在[-2,2]上的奇函數(shù)f(x)為減函數(shù),若f(1-2a)+f(a+1)<0,則實(shí)數(shù)a的取值范圍是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a=3${\;}^{\frac{4}{3}}$,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{1}{3}$,那么( 。
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在極坐標(biāo)系中,圓 C以點(diǎn)C(2,$\frac{π}{3}$)為圓心,2為半徑.在以極點(diǎn)為原點(diǎn),以極軸為x軸正半軸且單位長(zhǎng)度一樣的直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(2,$\sqrt{3}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):
x3456
y2.5344.5
(1)已知產(chǎn)量x和能耗y呈線性關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式;$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\widehat{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案