求證:夾在兩個(gè)平行平面間的平行線段相等.

【答案】分析:過AB,CD可作平面γ,且平面γ與平面α和β 分別相交與AC和BD,由兩個(gè)平面平行的性質(zhì)定理可得BD∥AC,從而得到
四邊形ABCD是平行四邊形,結(jié)論得證.
解答:解:已知:如圖,α∥β,AB∥CD,
且A∈α,C∈α,B∈β,D∈β.求證:AB=CD.
證明:∵AB∥CD,
可過AB,CD可作平面γ,且平面γ與平面α和β
分別相交與AC和BD.
∵α∥β,∴BD∥AC.
∴四邊形ABCD是平行四邊形.∴AB=CD.
點(diǎn)評(píng):本題考查證明線線平行的方法,兩個(gè)平面平行的性質(zhì)定理的應(yīng)用,過AB,CD可作平面γ 是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、求證:夾在兩個(gè)平行平面間的平行線段相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求證:夾在兩個(gè)平行平面間的平行線段相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:夾在兩個(gè)平行平面間的平行線段相等.

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:證明題

求證:夾在兩個(gè)平行平面間的平行線段相等。

查看答案和解析>>

同步練習(xí)冊(cè)答案