過(guò)雙曲線
x2
2
-y2=1
的右焦點(diǎn),且傾斜角為45°的直線交雙曲線于點(diǎn)A、B,則|AB|=______.
∵雙曲線的方程為:
x2
2
-y2=1

∴a=
2
,b=1,c=
a2+b2
=
3
,
故雙曲線的右焦點(diǎn)坐標(biāo)為(
3
,0)
故直線AB的方程為y=x-
3
,與
x2
2
-y2=1
聯(lián)立,
消掉y并整理可得x2-4
3
x+8=0
,(*)
顯然△=(-4
3
)2-4×1×8
=16>0,
故方程(*)有兩個(gè)不等實(shí)根x1,x2,
由根與系數(shù)關(guān)系可得x1+x2=4
3
,x1•x2=8,
故|AB|=
(1+12)[(x1+x2)2-4x1x2]
=
2[(4
3
)
2
-4×8]
=4
2

故答案為:4
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

動(dòng)點(diǎn)P(m,n)到直線的距離為λ,點(diǎn)P的軌跡為雙曲線(且原點(diǎn)O為準(zhǔn)線l對(duì)應(yīng)的焦點(diǎn)),則λ的取值為
A.λ∈RB.λ="1"C.λ>1D.0<λ<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(Ⅰ)求以橢圓
x2
13
+
y2
3
=1
的焦點(diǎn)為焦點(diǎn),以直線y=±
1
2
x
為漸近線
(Ⅱ)雙曲線的兩條對(duì)稱(chēng)軸是坐標(biāo)軸,實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,且過(guò)點(diǎn)(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

△ABC的頂點(diǎn)B(-4,0),C(4,0),△ABC的內(nèi)切圓圓心在直線x=1上,則頂點(diǎn)A的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

與雙曲線
x2
16
-
y2
9
=1
有共同的漸近線,且經(jīng)過(guò)點(diǎn)A(2
3
,-3)
的雙曲線標(biāo)準(zhǔn)方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線的兩條漸近線的夾角為60°,則該雙曲線的離心率為( 。
A.2B.
6
3
C.2或
6
3
D.2或
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線x2-4y2=-1的漸近線方程為( 。
A.x±2y=0B.2x±y=0C.x±4y=0D.4x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知實(shí)數(shù)4,m,9構(gòu)成一個(gè)等比數(shù)列,m為等比中項(xiàng),則圓錐曲線
x2
m
+y2=1
的離心率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列圖中的多邊形均為正多邊形,M、N是所在邊上的中點(diǎn),雙曲線均以圖中的F1、F2為焦點(diǎn),設(shè)圖(1),(2),(3)中的雙曲線的離心率分別為e1、e2、e3.則e1、e2、e3的大小關(guān)系為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案