函數(shù)f(x)=x-lg-3的零點(diǎn)所在區(qū)間為
(0,1)
(1,2)
(2,3)
(3,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)1-1蘇教版 蘇教版 題型:044
已知函數(shù)f(x)=lnx,g(x)=x2+a(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程和a的值;
(2)求函數(shù)y=f(1+x2)-g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省師大附中2012屆高三第四次模擬考試數(shù)學(xué)理科試題 題型:022
設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(MD),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是________.如果定義域?yàn)?B>R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省珠海市斗門一中2008-2009學(xué)年度高三二月質(zhì)量檢測(cè)數(shù)學(xué)文科 題型:044
設(shè)函數(shù)f(x)=x(x-a)(x-b),a,b∈R.
(1)若a≠b,ab≠0,過(guò)兩點(diǎn)O(0,0)和A(a,0)的中點(diǎn)作x軸的垂線交曲線y=f(x)于點(diǎn)P(x0,f(x0),求證:曲線y=f(x)在點(diǎn)P處的切線l過(guò)點(diǎn)(b,0);
(2)若b=a≠0,當(dāng)x∈[0,|a|]時(shí)f(x)<2a2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過(guò)原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com