已知函數(shù)f(x)=-x2+2mx+1,若?x2∈R,使得?x1∈[1,2]都有f(x1)<f(x2),則實(shí)數(shù)m的取值范圍是


  1. A.
    (-∞,1)
  2. B.
    (1,2)
  3. C.
    (2,+∞)
  4. D.
    (-∞,1)與(2,+∞)
D
分析:函數(shù)f(x)=-x2+2mx+1開口向下、對稱軸方程為x=m的拋物線,由?x2∈R,使得?x1∈[1,2]都有f(x1)<f(x2),知m<1或m>2.
解答:解:函數(shù)f(x)=-x2+2mx+1開口向下、對稱軸方程為x=m的拋物線,
∵?x2∈R,使得?x1∈[1,2]都有f(x1)<f(x2),
結(jié)合拋物線的形狀,知:
∴m<1或m>2,
∴實(shí)數(shù)m的取值范圍是:(-∞,1)∪(2,+∞).
故選D.
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì),是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案