在三棱錐A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC、△ACD、△ADB的面積分別為
2
2
3
2
、
6
2
,則三棱錐A-BCD的外接球的體積為( 。
A、
6
π
B、2
6
π
C、3
6
π
D、4
6
π
分析:三棱錐A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,補(bǔ)成長方體,兩者的外接球是同一個(gè),長方體的對(duì)角線就是球的直徑,求出長方體的三度,轉(zhuǎn)化為對(duì)角線長,即可求解外接球的體積.
解答:解:三棱錐A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,補(bǔ)成長方體,兩者的外接球是同一個(gè),長方體的對(duì)角線就是球的直徑,
設(shè)長方體的三度為a,b,c由題意得:ab=
6
,ac=
3
,bc=
2
,
解得:a=
3
,b=
2
,c=1,
所以球的直徑為:
(
3
)
2
+(
2
)
2
+1
=
6

它的半徑為
6
2
,
球的體積為
3
(
6
2
)
3
=
6
π

故選A
點(diǎn)評(píng):本題是基礎(chǔ)題,考查幾何體的外接球的體積,三棱錐轉(zhuǎn)化為長方體,兩者的外接球是同一個(gè),以及長方體的對(duì)角線就是球的直徑是解題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且長度均為1,E為BC中點(diǎn),則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,AB=4,CD=2,且異面直線AB、CD所成的角為60°,若M、N分別是AD、BC的中點(diǎn),則MN=
3
7
3
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•渭南三模)在三棱錐A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求證:DE⊥平面ABC;
(Ⅱ)求平面BAC與平面DAC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜
邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面ABC是正三角形.
(1)當(dāng)正視圖方向與向量
CD
的方向相同時(shí),畫出三棱錐A-BCD的三視圖;(要求標(biāo)出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在線段AC上是否存在一點(diǎn)E,使ED與平面BCD成30°角?若存在,確定點(diǎn)E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得MF⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案