已知數(shù)列{an}滿足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(Ⅰ)證明:數(shù)列{an+1-an}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式.
分析:(Ⅰ)由an+2=3an+1-2an⇒an+2-an+1=2(an+1-an),a1=1,a2=3,從而可證數(shù)列{an+1-an}是等比數(shù)列;
(Ⅱ)由(Ⅰ)得an+1-an=2n(n∈N*),利用累加法,借助等比數(shù)列的求和公式即可求得數(shù)列{an}的通項公式.
解答:證明:(Ⅰ)∵an+2=3an+1-2an,
∴an+2-an+1=2(an+1-an),
an+2-an+1
an+1-an
=2(n∈N*).
∵a1=1,a2=3,
∴數(shù)列{an+1-an}是以a2-a1=2為首項,2為公比的等比數(shù)列.
(Ⅱ)由(Ⅰ)得an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1
=2n-1(n∈N*).
點評:本題考查數(shù)列的概念及簡單表示法,考查等比關系的確定及等比數(shù)列的求和,考查轉化與分析推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案