【題目】已知離心率為的橢圓經(jīng)過(guò)拋物線的焦點(diǎn),斜率為1的直線經(jīng)過(guò)且與橢圓交于兩點(diǎn).
(1)求面積;
(2)動(dòng)直線與橢圓有且僅有一個(gè)交點(diǎn),且與直線分別交于兩點(diǎn),為橢圓的右焦點(diǎn),證明為定值.
【答案】(1)(2)見(jiàn)解析
【解析】
(1)由拋物線方程求出焦點(diǎn)的坐標(biāo),再根據(jù)橢圓的簡(jiǎn)單幾何性質(zhì)即可求出橢圓方程,將直線與橢圓的方程聯(lián)立,求出弦長(zhǎng),由點(diǎn)到直線的距離公式求出原點(diǎn)到直線的距離,即可根據(jù)三角形面積公式求出面積;
(2)根據(jù)題意可知直線的斜率存在,設(shè)直線的方程為:,與橢圓方程聯(lián)立,根據(jù)可得的關(guān)系,再根據(jù)兩點(diǎn)間的距離公式分別求出,即可計(jì)算出為定值.
(1)因?yàn)榻裹c(diǎn),代入得,,解得,
∴,
∵直線的斜率為1,且經(jīng)過(guò),則直線方程為,
聯(lián)立解得或∴,
∴,又原點(diǎn)到直線的距離為,
∴.
(2)根據(jù)題意可知直線的斜率存在,可設(shè)直線的方程為:,聯(lián)立,
可得,整理可得,
可知,,,
則為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說(shuō)法錯(cuò)誤的是( 。
A.該市總有 15000 戶低收入家庭
B.在該市從業(yè)人員中,低收入家庭共有1800戶
C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶
D.在該市大于18歲在讀學(xué)生中,低收入家庭有 800 戶
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊是的三等分點(diǎn),是的中點(diǎn).分別沿將四邊形和折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,分別為的中點(diǎn).
(1)證明:平面
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形中,,,,為的中點(diǎn).現(xiàn)分別沿,將和折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.
(Ⅰ)若、分別為、的中點(diǎn),求證:平面平面;
(Ⅱ)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形中,,,,為的中點(diǎn).現(xiàn)分別沿,將和折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.
(Ⅰ)若平面內(nèi)的動(dòng)點(diǎn)滿足平面,作出點(diǎn)的軌跡并證明;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推動(dòng)實(shí)施健康中國(guó)戰(zhàn)略,樹(shù)立國(guó)家大衛(wèi)生、大健康概念,手機(jī)APP也推出了多款健康運(yùn)動(dòng)軟件,如“微信運(yùn)動(dòng)”,楊老師的微信朋友圈內(nèi)有位好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了位微信好友(女人,男人),統(tǒng)計(jì)其在某一天的走路步數(shù),其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 | 8520 | 7326 | 6798 | 7325 | 8430 | 3216 | 7453 | 11754 | 9860 |
8753 | 6450 | 7290 | 4850 | 10223 | 9763 | 7988 | 9176 | 6421 | 5980 |
男性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別:步(說(shuō)明“”表示大于等于,小于等于,下同),步,
(1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來(lái)估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)楊老師的微信好友圈里參與“微信運(yùn)動(dòng)”的名好友中,每天走路步數(shù)在步的人數(shù);
(2)請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定“認(rèn)定類(lèi)型”與“性別”有關(guān)?
衛(wèi)健型 | 進(jìn)步型 | 總計(jì) | |
男 | 20 | ||
女 | 20 | ||
總計(jì) | 40 |
附:,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,圓.
(1)若拋物線的焦點(diǎn)在圓上,且為 和圓 的一個(gè)交點(diǎn),求;
(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;
(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com