【題目】已知離心率為的橢圓經(jīng)過(guò)拋物線的焦點(diǎn),斜率為1的直線經(jīng)過(guò)且與橢圓交于兩點(diǎn).

1)求面積;

2)動(dòng)直線與橢圓有且僅有一個(gè)交點(diǎn),且與直線分別交于兩點(diǎn),為橢圓的右焦點(diǎn),證明為定值.

【答案】12)見(jiàn)解析

【解析】

1)由拋物線方程求出焦點(diǎn)的坐標(biāo),再根據(jù)橢圓的簡(jiǎn)單幾何性質(zhì)即可求出橢圓方程,將直線與橢圓的方程聯(lián)立,求出弦長(zhǎng),由點(diǎn)到直線的距離公式求出原點(diǎn)到直線的距離,即可根據(jù)三角形面積公式求出面積;

2)根據(jù)題意可知直線的斜率存在,設(shè)直線的方程為:,與橢圓方程聯(lián)立,根據(jù)可得的關(guān)系,再根據(jù)兩點(diǎn)間的距離公式分別求出,即可計(jì)算出為定值.

1)因?yàn)榻裹c(diǎn),代入得,解得,

,

∵直線的斜率為1,且經(jīng)過(guò),則直線方程為,

聯(lián)立解得

,又原點(diǎn)到直線的距離,

.

2)根據(jù)題意可知直線的斜率存在,可設(shè)直線的方程為:,聯(lián)立,

可得,整理可得,

可知,,,

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說(shuō)法錯(cuò)誤的是( 。

A.該市總有 15000 戶低收入家庭

B.在該市從業(yè)人員中,低收入家庭共有1800戶

C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶

D.在該市大于18歲在讀學(xué)生中,低收入家庭有 800 戶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點(diǎn),的中點(diǎn).分別沿將四邊形折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,分別為的中點(diǎn).

(1)證明:平面

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形中,,,的中點(diǎn).現(xiàn)分別沿折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.

(Ⅰ)若分別為、的中點(diǎn),求證:平面平面

(Ⅱ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形中,,,的中點(diǎn).現(xiàn)分別沿折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.

(Ⅰ)若平面內(nèi)的動(dòng)點(diǎn)滿足平面,作出點(diǎn)的軌跡并證明;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)函數(shù)內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

2)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)實(shí)施健康中國(guó)戰(zhàn)略,樹(shù)立國(guó)家大衛(wèi)生、大健康概念,手機(jī)APP也推出了多款健康運(yùn)動(dòng)軟件,如微信運(yùn)動(dòng),楊老師的微信朋友圈內(nèi)有位好友參與了微信運(yùn)動(dòng),他隨機(jī)選取了位微信好友(女人,男人),統(tǒng)計(jì)其在某一天的走路步數(shù),其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860

8520

7326

6798

7325

8430

3216

7453

11754

9860

8753

6450

7290

4850

10223

9763

7988

9176

6421

5980

男性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別:步(說(shuō)明表示大于等于,小于等于,下同),步,步,步,步及以上,且三種類(lèi)別人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的條形圖,若某人一天的走路步數(shù)超過(guò)步被系統(tǒng)認(rèn)定為衛(wèi)健型,否則被系統(tǒng)認(rèn)定為進(jìn)步型”.

1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來(lái)估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)楊老師的微信好友圈里參與微信運(yùn)動(dòng)名好友中,每天走路步數(shù)在步的人數(shù);

2)請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定認(rèn)定類(lèi)型性別有關(guān)?

衛(wèi)健型

進(jìn)步型

總計(jì)

20

20

總計(jì)

40

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求

(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線.

(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;

(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案