在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).
(1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求點(diǎn)G到平面BCE的距離.
(1)點(diǎn)F應(yīng)是線段CE的中點(diǎn)(2)(3)
【解析】
試題分析:解法一:以D點(diǎn)為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,使得x軸和z軸的正半軸分別經(jīng)過(guò)點(diǎn)A和點(diǎn)E,則各點(diǎn)的坐標(biāo)為D(0,0,0),A(2,0,0),E(0,0,2),
B(2,0,1),,
(1)點(diǎn)F應(yīng)是線段CE的中點(diǎn),下面證明:
設(shè)F是線段CE的中點(diǎn),則點(diǎn)F的坐標(biāo)為,
∴,取平面ACD的法向量,
則,∴BF∥平面ACD;
(2)設(shè)平面BCE的法向量為,則,且,
由,,
∴,不妨設(shè),則,即,
∴所求角θ滿足,∴;
(3)由已知G點(diǎn)坐標(biāo)為(1,0,0),∴,
由(2)平面BCE的法向量為,∴所求距離.
解法二:(1)由已知AB⊥平面ACD,DE⊥平面ACD,∴AB∥ED,
設(shè)F為線段CE的中點(diǎn),H是線段CD的中點(diǎn),連接FH,則FH∥=,
∴FH∥=AB,∴四邊形ABFH是平行四邊形,∴BF∥AH,
由BF?平面ACD內(nèi),AH?平面ACD,∴BF∥平面ACD;
(2)由已知條件可知△ACD即為△BCE在平面ACD上的射影,
設(shè)所求的二面角的大小為θ,則,
易求得BC=BE=,CE=,∴,
而,∴,而,∴;
(3)連接BG、CG、EG,得三棱錐C﹣BGE,由ED⊥平面ACD,∴平面ABED⊥平面ACD,又CG⊥AD,∴CG⊥平面ABED,設(shè)G點(diǎn)到平面BCE的距離為h,則VC﹣BGE=VG﹣BCE即,由,,,
∴即為點(diǎn)G到平面BCE的距離.
考點(diǎn):空間幾何體線面平行的判定二面角點(diǎn)面距的計(jì)算
點(diǎn)評(píng):當(dāng)已知條件中出現(xiàn)了從同一點(diǎn)出發(fā)的三線兩兩垂直或可以平移為三線兩兩垂直時(shí),常利用空間向量求解,只需寫出各點(diǎn)坐標(biāo)代入相應(yīng)公式即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年長(zhǎng)沙一中一模理)(12分)在如圖所示的多面體中,底面△ABC是邊長(zhǎng)為2的正三角形,DA和EC均垂直于平面ABC,且DA = 2,EC = 1.
(Ⅰ)求點(diǎn)A到平面BDE的距離;
(Ⅱ)求二面角BEDA的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年四川省高三第三次模擬考試(理) 題型:解答題
(12分)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,
(1)求證:平面BEF⊥平面DEF;
(2)求二面角A—BF—E的大小。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com