【題目】已知正三棱柱中,,,點(diǎn)為的中點(diǎn),點(diǎn)在線段上.
(1)當(dāng)時(shí),求證:;
(2)是否存在點(diǎn),使二面角等于?若存在,求的長;若不存在,請說明理由.
【答案】(1)證明見解析;(2)存在點(diǎn),且.
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用線面垂直的性質(zhì)定理推證;(2)借助題設(shè)運(yùn)用空間向量的數(shù)量積公式建立方程求解.
試題解析:
(1)證明:連接,
因?yàn)?/span>為正三棱柱,所以為正三角形,
又因?yàn)?/span>為的中點(diǎn),所以,
又平面平面,平面平面,
所以平面,所以.
因?yàn)?/span>,,,所以,,
所以在中,,
在中,,所以,即,
又,
所以平面,平面,所以.
(2)假設(shè)存在點(diǎn)滿足條件,設(shè),
取的中點(diǎn),連接,則平面,
所以,,
分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,
則,,,
所以,,,,
設(shè)平面的一個(gè)法向量為,
則即令,得,
同理,平面的一個(gè)法向量為,
則即取,得,
所以,解得,
故存在點(diǎn),當(dāng)時(shí),二面角等于.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.
(1)將一星期的商品銷售利潤表示成的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在高為2的梯形中, , , ,過、分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。
(1)若,證明: ;
(2)若,證明: ;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn),正三棱柱的主視圖如圖(2).
(1)圖(1)中垂直于平面的平面有哪幾個(gè)(直接寫出符合要求的平面即可,不必說明或證明)
(2)求正三棱柱的體積;
(3)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,,,)的圖象在點(diǎn)處的切線的斜率為,且函數(shù)為偶函數(shù).若函數(shù)滿足下列條件:①;②對一切實(shí)數(shù),不等式恒成立.
(1)求函數(shù)的表達(dá)式;
(2)設(shè)函數(shù)()的兩個(gè)極值點(diǎn),()恰為的零點(diǎn).當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年12月16日,科幻片《俠盜一號》上映,上映至今,全球累計(jì)票房高達(dá)8億美金.為了了解婁底觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看影片的觀眾,并用“10分制”對滿意度進(jìn)行評分,分?jǐn)?shù)越高滿意度越高,若分?jǐn)?shù)不低于9分,則稱該觀眾為“滿意觀眾”.現(xiàn)從調(diào)查人群中隨機(jī)抽取12名.如圖所示的莖葉圖記錄了他們的滿意度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉).
(1)求從這12人中隨機(jī)選取1人,該人不是“滿意觀眾”的概率;
(2)從本次所記錄的滿意度評分大于9.1的“滿意觀眾”中隨機(jī)抽取2人,求這2人得分不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水是萬物之本、生命之源,節(jié)約用水,從我做起.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.(1)求直方圖中a的值;(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了完成對某城市的工薪階層是否贊成調(diào)整個(gè)人所得稅稅率的調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入頻率分布直方圖(如圖),同時(shí)得到了他們月收入情況與贊成人數(shù)統(tǒng)計(jì)表(如下表):
(1)試根據(jù)頻率分布直方圖估計(jì)這60人的平均月收入;
(2)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人都不贊成的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com