在三角形ABC中,角A,B,C所對應的長分別為a,b,c,若a=2,B=,c=2,則b=   
【答案】分析:由題設條件知,直接利用余弦定理建立方程求出b即可.
解答:解:由余弦定理可知b2=a2+c2-2accosB=22+-2×2×2×=4.
因為b是三角形的邊長,所以b=2.
故答案為:2.
點評:本題考查余弦定理的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,角A.B.C成公差大于0的等差數(shù)列,
m
=(sinAcos
C-A
2
,cos2A)
,
n
=(2cosA,sin
C-A
2
)

(1)求
m
n
的取值范圍;
(2)若設A.B.C的對應邊分別為a.b.c,求
a+c
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三角形ABC中,角A,B,C成等差數(shù)列,D是BC邊的中點,AD=
3
AB=
3

(1)求邊長AC的長;
(2)求sin∠DAC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)sin(-
2
+ωx)(0<ω<
1
2
)
,且函數(shù)y=f(x)的圖象的一個對稱中心為(
3
,a)

(I)求a和函數(shù)f(x)的單調遞減區(qū)間;
(II)在三角形ABC中,角A,B,C的對邊分別是a,b,c,滿足
2a-c
b
=
cosC
cosB
,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,角A、B、C所對的邊分別是a、b、c,若a=
3
2
b,A=2B,則cosB等于( 。
A、
3
3
B、
3
4
C、
3
5
D、
3
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,角A、B、C及其對邊a,b,c滿足:ccosB=(2a-b)cosC.
(1)求角C的大。
(2)求函數(shù)y=2sin2B-cos2A的值域.

查看答案和解析>>

同步練習冊答案