在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線(xiàn)ρ(cosθ+sinθ)=1與ρ(cosθ-sinθ)=1的交點(diǎn)的極坐標(biāo)為
 
考點(diǎn):簡(jiǎn)單曲線(xiàn)的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:將原方程左式展開(kāi)后利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,化成直角坐標(biāo)方程,最后在直角坐標(biāo)系中算出交點(diǎn)的坐標(biāo),再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系求出其極坐標(biāo)即可.
解答: 解:∵p(cosθ+sinθ)=1,
∴x+y=1,①
∵ρ(cosθ-sinθ)=1,
∴x-y=1,②
解①②組成的方程組得交點(diǎn)的直角坐標(biāo)
(1,0)
∴交點(diǎn)的極坐標(biāo)為(1,0).
故答案為:(1,0).
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻數(shù)分布直方圖如圖所示.
(Ⅰ)求頻數(shù)直方圖中a的值;
(Ⅱ)分別球出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列:
1
1
,
2
1
1
2
,
3
1
2
2
1
3
,
4
1
3
2
,
2
3
,
1
4
,…依它的前10項(xiàng)的規(guī)律,這個(gè)數(shù)列的第2014項(xiàng)a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電.屬于
 
推理(填:合情、演繹、類(lèi)比、歸納).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
4
+x)=
3
5
,sin(
π
4
-x)=-
4
5
,則tan(
π
4
-x)tan(
π
4
+x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a+b+c=0,則ab+bc+ca的值
 
0.( 選填“>,<,≥,≤”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(2,2)關(guān)于直線(xiàn)x-y-1=0的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有兩排座位,前排4個(gè)座位,后排5個(gè)座位,現(xiàn)安排2人就坐,并且這2人不相鄰(一前一后也視為不相鄰),那么不同坐法的種數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={1,2,3},集合B={-2,2},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案