拋物線(xiàn)x2=-2y中斜率為2的平行弦(動(dòng)弦)的中點(diǎn)的軌跡方程是 ________.

x+2=0(y<-2)
分析:設(shè)出直線(xiàn)方程和兩個(gè)交點(diǎn)坐標(biāo),與拋物線(xiàn)方程聯(lián)立消去y,利用判別式大于0求得b的范圍,同時(shí)根據(jù)韋達(dá)定理分別求得x1+x2的值,利用直線(xiàn)方程求得y1+y2的表達(dá)式,設(shè)出AB的中點(diǎn)的坐標(biāo),可求得x=-2,同時(shí)根據(jù)b的范圍可確定y的范圍,最后可求得所求的軌跡方程.
解答:設(shè)直線(xiàn)方程為y=2x+b
設(shè)兩個(gè)交點(diǎn)為A(x1,y1),B(x2,y2)聯(lián)立拋物線(xiàn)x2=-2y與直線(xiàn)方程y=2x+b,
消去y,可得x2+4x+2b=0△=16-4•1•2b>0∴b<2 ①
另根據(jù)韋達(dá)定理有:x1+x2=-4 ②
而A(x1,y1),B(x2,y2)都在直線(xiàn)y=2x+b上,可分別代入得到:y1=2x1+b y2=2x2+b
∴y1+y2=2(x1+x2)+2b將②代入上式,可得:y1+y2=2b-8 ③
設(shè)AB的中點(diǎn)M(x,y),可根據(jù)中點(diǎn)坐標(biāo)公式表示為:x=
y= 分別將②,③代入,可得:x=-2 y=b-4
由條件①:b<2,可得:y=b-4<2-4<-2
∴M點(diǎn)(即動(dòng)弦AB中點(diǎn))的軌跡方程時(shí):x=-2這條直線(xiàn)位于y=-2之下的部分,
即軌跡方程x+2=0(y<-2)
故答案為:x+2=0(y<-2)
點(diǎn)評(píng):本題主要考查了直線(xiàn)與拋物線(xiàn)的位置關(guān)系,求軌跡方程問(wèn)題等.一般是把直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立,利用韋達(dá)定理求得問(wèn)題的解決的途徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在拋物線(xiàn)x2=2y上,與直線(xiàn)2x+2y+3=0相切的圓中,求面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)x2=2y的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,過(guò)l上一點(diǎn)P,作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為A、B,某數(shù)學(xué)興趣小組在研究討論中,提出如下兩個(gè)猜想:
①直線(xiàn)PA、PB垂直;
②等式
FA
FB
=λ 
FP
2
中λ為常數(shù);現(xiàn)請(qǐng)你進(jìn)行一一驗(yàn)證這兩個(gè)猜想是否成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)x2=-2y中斜率為2的平行弦(動(dòng)弦)的中點(diǎn)的軌跡方程是
x+2=0(y<-2)
x+2=0(y<-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省深圳市寶安區(qū)松崗中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

拋物線(xiàn)x2=-2y中斜率為2的平行弦(動(dòng)弦)的中點(diǎn)的軌跡方程是    

查看答案和解析>>

同步練習(xí)冊(cè)答案