若直線m被兩平行線l1:x-y+1=0與x-y-1=0所截得線段的長(zhǎng)為,則直線m的傾斜角是   
【答案】分析:由兩平行線間的距離=,得直線m 和兩平行線的夾角為30°,設(shè)直線m 的斜率為k,傾斜角為α,則由兩條直線的夾角公式求出k,根據(jù)斜率求出直線的傾斜角.
解答:解:兩平行線間的距離為 =,故直線m 和兩平行線的夾角為30°,設(shè)直線m 的斜率為k,傾斜角為α,
則由兩條直線的夾角公式 tan30°==,解得 k==tan(45°-30° ),
或 k==tan(45°+30°).∴α=15° 或75°,
故答案為 15°或75°.
點(diǎn)評(píng):本題考查兩平行線間的距離公式,兩條直線的夾角公式,兩角和差的正切公式,得到兩條直線的夾角公式tan30°==,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長(zhǎng)為2
2
,則m的傾斜角可以是①15°②30°③45°④60°⑤75°其中正確答案的序號(hào)是
 
(寫出所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線m被兩平行線l1:x-y+1=0與x-y-1=0所截得線段的長(zhǎng)為2
2
,則直線m的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線m被兩平行線l1:x-y+1與l2:x-y+3=0所截得的線段的長(zhǎng)為
2
,則直線m的傾斜角是
135°
135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=
x2-8x+20
+
x2+1
的最小值為5;
②若直線y=kx+1與曲線y=|x|有兩個(gè)交點(diǎn),則k的取值范圍是-1≤k≤1;
③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長(zhǎng)為2
2
,則m的傾斜角可以是15°或75°
④設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,若對(duì)任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
⑤設(shè)△ABC的內(nèi)角A.B.C所對(duì)的邊分別為a,b,c,若三邊的長(zhǎng)為連續(xù)的三個(gè)正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
其中所有正確命題的序號(hào)是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長(zhǎng)為2
2
,則直線m的斜率可以是:
2-
3
;  ②
3
3
;   ③1;   ④
3
;  ⑤2+
3

其中正確答案的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案