已知
e1
e2
是平面上兩個不共線的向量,向量
a
=2
e1
-
e2
,
b
=m
e1
+3
e2
.若
a
b
,則實數(shù)m=______.
a
b

∴存在λ∈R,使得
a
b

2
e1
-
e2
=λ (m
e1
+3
e2
)

2=λm
-1=3λ

解得m=-6
故答案為-6
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
e1
、
e2
是平面上兩個不共線的向量,向量
a
=2
e1
-
e2
,
b
=m
e1
+3
e2
.若
a
b
,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e
1
e
2
是平面內(nèi)兩個不共線的向量,
a
=2
e
1
-
e
2
,
b
=k
e1
+
e2
,若
a
b
,則實數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
e2
是平面上的兩個單位向量,且|
e1
+
e2
|≤1
,
OP
=m
e1
, 
 OQ
=n
e2
,若O為坐標原點,m,n均為正常數(shù),則(
OP
+
OQ
)2
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
、
e2
是平面上兩個不共線的單位正交向量,向量
a
=
e1
-
e2
,
b
=m
e1
+2
e2
.若
a
b
,則實數(shù)m=
2
2

查看答案和解析>>

同步練習冊答案