如圖,直三棱柱中,,
中點(diǎn),上一點(diǎn),且.
(1)當(dāng)時(shí),求證:平面
(2)若直線與平面所成的角為,求的值.
(1)詳見(jiàn)解析;(2) .

試題分析:由于兩兩互相垂直,故可以為坐標(biāo)軸建立空間直角坐標(biāo)系,然后利用空間向量求解.(1)建立空間直角坐標(biāo)系如圖所示,求出向量,再數(shù)量積,只要它們的數(shù)量積等于0即可.(2)首先求出平面的一個(gè)法向量,由直線與平面所成角的公式及題設(shè)可得,解這個(gè)方程即得.

試題解析:(1)建立空間直角坐標(biāo)系如圖所示,則
,

              3分
 
平面;    6分
(2)由題知,,

平面的一個(gè)法向量為    9分

  解得.    13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分別為BB1、
A1C1的中點(diǎn).
(1)求證:CB1⊥平面ABC1;
(2)求證:MN//平面ABC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面,分別為中點(diǎn),
(Ⅰ)求證:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐,底面為菱形,
平面,,分別是的中點(diǎn).
(1)證明:
(2)若上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在四棱錐中,底面是正方形,,,點(diǎn)上,且.

(1)求證:平面;   
(2)求二面角的余弦值;
(3)證明:在線段上存在點(diǎn),使∥平面,并求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱臺(tái)中,底面是平行四邊形,平面,,.

(1)證明:平面;
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

類比此性質(zhì),如下圖,在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為_(kāi)_________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給岀四個(gè)命題:
(1)若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;
(2)a,b為兩個(gè)不同平面,直線aÌa,直線bÌa,且a∥b,b∥b,則a∥b;
(3)a,b為兩個(gè)不同平面,直線m⊥a,m⊥b,則a∥b;
(4)a,b為兩個(gè)不同平面,直線m∥a,m∥b,則a∥b .
其中正確的是(   )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案