【題目】已知數(shù)列的前項和為,,,且當時,與6的等差中項為.數(shù)列為等比數(shù)列,且,.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)求數(shù)列的前項和.
【答案】見解析
【解析】(Ⅰ)由已知當時,,整理得,
所以數(shù)列從第2項起構(gòu)成等差數(shù)列,公差.
而,
故當時,. ----------------------2分
而,顯然,
故. ------------------4分
等比數(shù)列中,,,故其公比.
所以其通項. ---------------------------6分
(Ⅱ)令,由(Ⅰ)知,. ---------------7分
當時,.
當時,
①
②
①②,得
,
所以. -------------------11分
顯然,當時,也成立.
故. -------------------12分
【命題意圖】本題考查與的關(guān)系、等比數(shù)列的基本運算、數(shù)列通項公式以及數(shù)列求和等,考查基本的運算能力與邏輯推理能力等.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有觸礁的危險?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】面對全球范圍內(nèi)日益嚴峻的能源形勢與環(huán)保壓力,環(huán)保與低碳成為今后汽車發(fā)展的一大趨勢,越來越多的消費者對新能源汽車表示出更多的關(guān)注,某研究機構(gòu)從汽車市場上隨機抽取N輛純電動汽車調(diào)查其續(xù)航里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)航里程全部介于100公里和450公里之間,根據(jù)調(diào)查數(shù)據(jù)形成了如圖所示頻率分布表及頻率分布直方圖.
頻率分布表
分組 | 頻數(shù) | 頻率 |
[100,150) | 1 | 0.05 |
[150,200) | 3 | 0.15 |
[200,250) | x | 0.1 |
[250,300) | 6 | 0.3 |
[300,350) | 4 | 0.2 |
[350,400) | 3 | y |
[400,450] | 1 | 0.05 |
合計 | N | 1 |
(1)試確定頻率分布表中x,y,N的值,并補全頻率分布直方圖;
(2)若從續(xù)航里程在[200,250)及[350,400)的車輛中隨機抽取2輛車,求兩輛車續(xù)航里程都在[350,400)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點,(都在軸上方),且.
(。┤酎c的橫坐標為1,求的面積;
(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知由1,2,3號三位男性選手和4,5號兩位女性選手組成混合組參賽.已知象棋大賽共有三輪,設(shè)三位男性選手在一至三輪勝出的概率依次是;兩名女性選手在一至三輪勝出的概率依次是.
(Ⅰ)若該組五名選手與另一組選手進行小組淘汰賽,每名選手只比賽一局,共五局比賽,求該組兩名女性選手的比賽次序恰好不相鄰的概率;
(Ⅱ)若一位男性選手因身體不適退出比賽,剩余四人參加個人比賽,比賽結(jié)果相互不影響,設(shè)表示該組選手在四輪中勝出的人數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知直線l經(jīng)過點,傾斜角,圓的極坐標方程為.
(Ⅰ)寫出直線l的參數(shù)方程,并把圓的方程化為直角坐標方程;
(Ⅱ)設(shè)l與圓相交于兩點,求點到兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行節(jié)日促銷活動,消費滿一定數(shù)額即可獲得一次抽獎機會,抽獎這可以從以下兩種方式中任選一種進行抽獎.
抽獎方式①:讓抽獎?wù)唠S意轉(zhuǎn)動如圖所示的圓盤,圓盤停止后指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即中獎.
抽獎方式②:讓抽獎?wù)邚难b有3個白球和3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即中獎.
假如你是抽獎?wù),為了讓中獎的可能性大,你?yīng)該選擇哪一種抽獎方式?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當x≥0時, ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實數(shù)t的取值范圍是. .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a為實數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實數(shù)a.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com