在平面向量中有如下定理:設(shè)點O,P,Q,R為同一平面內(nèi)的點,則P,Q,R三點共線的充要條件是:存在實數(shù)t,使.如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設(shè),則( )

A.
B.
C.
D.
【答案】分析:利用平面向量的基本定理,將向量進行分解,通過比較兩個向量式子,建立系數(shù)方程,然后求解x,y的數(shù)值.
解答:解:因為點B、M、F三點共線,則存在實數(shù)t,使
,則
因為點C、M、E三點共線,則,所以
,
故選A.
點評:本題的考點是平面向量的基本定理以及其基本應(yīng)用.在分解過程中要利用好向量的共線條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面向量中有如下定理:設(shè)點O、P、Q、R為同一平面內(nèi)的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.試利用該定理解答下列問題:
如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設(shè)
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•惠州二模)在平面向量中有如下定理:設(shè)點O,P,Q,R為同一平面內(nèi)的點,則P,Q,R三點共線的充要條件是:存在實數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設(shè)
AM
=x
AE
+y
AF
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面向量中有如下定理:設(shè)點O,P,Q,R為同一平面內(nèi)的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使.

如圖,在ΔABC中,點E為AB邊的中點,點F在AC邊上,

且CF=2FA,BF交CE于點M,設(shè),則 

A.           B.

C.           D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面向量中有如下定理:設(shè)點O,P,Q,R為同一平面內(nèi)的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使.試利用該定理解答下列問題:如圖,

 


在ΔABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設(shè),則x+y=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面向量中有如下定理:設(shè)點O,P,Q,R為同一平面內(nèi)的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使.

如圖,在ΔABC中,點E為AB邊的中點,點F在AC邊上,

且CF=2FA,BF交CE于點M,設(shè),則 

               (   )

A.           B.

C.           D.

查看答案和解析>>

同步練習(xí)冊答案