如圖, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,點(diǎn)DAB的中點(diǎn),

  (1)求證:ACBC1;

  (2)求證:AC 1//平面CDB1;

  (3)求異面直線 AC1B1C所成角的余弦值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 (1)直三棱柱ABC-A1B1C1,底面三邊長(zhǎng)AC=3,BC=4AB=5,

∴ AC⊥BC,且BC1在平面ABC內(nèi)的射影為BC,∴ AC⊥BC1;

(2)設(shè)CB1與C1B的交點(diǎn)為E,連結(jié)DE,∵ D是AB的中點(diǎn),E是BC1的中點(diǎn),∴ DE//AC1,

∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1

(3)∵ DE//AC1,∴ ∠CED為AC1與B1C所成的角,

在△CED中,ED=AC 1=,CD=AB=,CE=CB1=2,∴ ,

∴ 異面直線 AC1B1C所成角的余弦值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=a,AC=2,AA1=1,點(diǎn)D在棱B1C1上且B1D:DC1=1:3
(1)證明:無論a為任何正數(shù),均有BD⊥A1C;
(2)當(dāng)a為何值時(shí),二面角B-A1D-B1為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中點(diǎn).
(1)求AC1與平面B1BCC1所成角的正切值;
(2)求證:AC1∥平面B1DC;
(3)已知E是A1B1的中點(diǎn),點(diǎn)P為一動(dòng)點(diǎn),記PB1=x.點(diǎn)P從E出發(fā),沿著三棱柱的棱,按照E→A1→A的路線運(yùn)動(dòng)到點(diǎn)A,求這一過程中三棱錐P-BCC1的體積表達(dá)式V(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中點(diǎn),F(xiàn)是AB中點(diǎn).
(1)求證:EF∥面BB1C1C;
(2)求直線EF與直線CC1所成角的正切值;
(3)設(shè)二面角E-AB-C的平面角為θ,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
3
,AB⊥AC,
(1)證明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,A1A=AC=
2
AB
,AB=BC=a,D為BB1的中點(diǎn).
(1)證明:平面ADC1⊥平面ACC1A1;
(2)求平面ADC1與平面ABC所成的二面角大。

查看答案和解析>>

同步練習(xí)冊(cè)答案