直線 y=x+1與橢圓
x2
12
+
y2
=1相交于A、B兩點,則|AB|=( 。
A、
3
2
4
B、
8
7
5
C、
3
4
D、
3
4
分析:把直線 y=x+1 代入橢圓
x2
12
+
y2
=1 化簡,利用根與系數(shù)的關系、弦長公式求出|AB|的值.
解答:解:把直線 y=x+1 代入橢圓
x2
12
+
y2
=1 化簡可得 5x2+8x-8=0,∴x1+x2=
-8
5
,x1•x2=
-8
5

∴|AB|=
1+1
×
(x1+x2)2-4x1x2
=
2
 
64
25
-4×
-8
5
=
8
7
5
,
故選B.
點評:本題考查直線和圓錐曲線的位置關系,點到直線的距離公式,弦長公式的應用,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)
如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省臺州市高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題


如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年浙江省溫州市瑞安中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年浙江省溫州市瑞安中學高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

同步練習冊答案