(本題滿分12分)

如圖,橢圓長軸端點(diǎn)為為橢圓中心,為橢圓的右焦點(diǎn),

,.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

 

【答案】

(1); (2)3x-3y-4=0

【解析】

試題分析:(1)設(shè)橢圓方程為,則

又∵,∴  

故橢圓方程為

(2)假設(shè)存在直線交橢圓于兩點(diǎn),且恰為的垂心,則

設(shè),∵,故

于是設(shè)直線,由

    

 即

 由韋達(dá)定理得

 

解得(舍) 經(jīng)檢驗(yàn)符合條件

考點(diǎn):本題考查了橢圓方程求法及直線與橢圓的位置關(guān)系

點(diǎn)評:橢圓的概念和性質(zhì),仍將是今后命題的熱點(diǎn),利用直線、弦長、圓錐曲線三者的關(guān)系組成的各類試題是解析幾何中長盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點(diǎn);與其它知識的交匯(如向量、不等式)命題將是今后高考命題的一個(gè)新的重點(diǎn)、熱點(diǎn)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案