【題目】已知復(fù)數(shù)z滿足|z|,z的實部大于0,z2的虛部為2.
(1)求復(fù)數(shù)z;
(2)設(shè)復(fù)數(shù)z,z2,z﹣z2之在復(fù)平面上對應(yīng)的點分別為A,B,C,求()的值.
【答案】(1)1+i;(2)﹣2.
【解析】
(1)先設(shè)出復(fù)數(shù)的表達(dá)式,結(jié)合已知條件中,實部大于,和的虛部為,列出方程求解出復(fù)數(shù)的表達(dá)式.
(2)由(1)求出復(fù)數(shù)的表達(dá)式,即可得到,,在復(fù)平面上對應(yīng)的點坐標(biāo),進(jìn)而求出結(jié)果.
(1)設(shè)復(fù)數(shù)z=x+yi,x、y∈R;
由|z|,得x2+y2=2;
又z的實部大于即x>0,
z2=x2﹣y2+2xyi的虛部為2xy=2,
所以xy=1;
解得x=1,y=1;
所以復(fù)數(shù)z=1+i;
(2)復(fù)數(shù),則,;
則A(1,1),B(0,2),C(1,﹣1);
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在軸正半軸上,點到其準(zhǔn)線的距離等于.
(Ⅰ)求拋物線的方程;
(Ⅱ)如圖,過拋物線的焦點的直線從左到右依次與拋物線及圓交于、、、四點,試證明為定值.
(Ⅲ)過、分別作拋物的切線、,且、交于點,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點為,,是橢圓上半部分的動點,連接和長軸的左右兩個端點所得兩直線交正半軸于,兩點(點在的上方或重合).
(1)當(dāng)面積最大時,求橢圓的方程;
(2)當(dāng)時,若是線段的中點,求直線的方程;
(3)當(dāng)時,在軸上是否存在點使得為定值,若存在,求點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:xy2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標(biāo)為;
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若方程在內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底);
(2)令,如果圖象與軸交于,,中點為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程:,
經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的分別約為和,請用說明選擇哪個回歸模型更合適,并用此模型預(yù)測超市廣告費支出為3萬元時的銷售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分不必要條件
C.若為假命題,則、均為假命題
D.命題:“,使得”,則非:“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com