已知f(x)=
|lgx|,x>0
2|x|,x≤0
,則函數(shù)y=2f2(x)-3f(x)+1的零點的個數(shù)為( 。﹤.
A、3B、4C、5D、6
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零點,即方程f(x)=
1
2
和f(x)=1的根,畫出函數(shù)f(x)=
|lgx|,x>0
2|x|,x≤0
的圖象,數(shù)形結(jié)合可得答案.
解答: 解:函數(shù)y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零點,
即方程f(x)=
1
2
和f(x)=1的根,
函數(shù)f(x)=
|lgx|,x>0
2|x|,x≤0
的圖象如下圖所示:

由圖可得方程f(x)=
1
2
和f(x)=1共有5個根,
即函數(shù)y=2f2(x)-3f(x)+1有5個零點,
故選:C
點評:本題考查函數(shù)圖象的變化與運用,涉及函數(shù)的周期性,對數(shù)函數(shù)的圖象等知識點,關(guān)鍵是作出函數(shù)的圖象,由此分析兩個函數(shù)圖象交點的個數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊上一點坐標(biāo)為P(x,-8),且cosα=
3
5
,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a,b,c,平面α,下列命題中,正確的是( 。
A、若a∥b,b?α,則a∥α
B、若a,b為異面直線,a?α,則b?α
C、若a⊥b,b⊥c,則a∥c
D、若a∥α,b?α,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
C
x
28
=
C
3x-8
28
的解集為( 。
A、{4}B、{9}
C、∅D、{4,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x; ③f(x)=
1
x
;④f(x)=ln|x|,其中是“保等比數(shù)列函數(shù)”的序號為(  )
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,lnx+x-2=0,命題q:?x∈R,2x≥x2,則下列命題中為真命題的是( 。
A、p∧qB、¬p∧q
C、p∧¬qD、¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A(3,2),B(-2,7),若y=ax-3與線段AB的交點P分有向線段AB的比為4:1,則a的值( 。
A、3B、-3C、9D、-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2014的值為( 。
A、4023B、4025
C、4027D、4029

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,E是PC的中點.
(1)證明:BE∥平面PAD;
(2)求直線AE與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案