【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動(dòng)中心,為此,該企業(yè)工會(huì)采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動(dòng)時(shí)間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來(lái)估計(jì)該企業(yè)職工每周的運(yùn)動(dòng)時(shí)間:
平均運(yùn)動(dòng)時(shí)間 | 頻數(shù) | 頻率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合計(jì) | 300 | 1 |
(1)求抽取的女職工的人數(shù);
(2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h的概率;
男職工 | 女職工 | 總計(jì) | |
平均運(yùn)動(dòng)時(shí)間低于4h | |||
平均運(yùn)動(dòng)時(shí)間不低于4h | |||
總計(jì) |
②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h,請(qǐng)完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于4h與性別有關(guān)”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)90;(2)①,見解析②有以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于與性別有關(guān)”.
【解析】
(1)直接由分層抽樣中每層所占比例相等求得抽取的女職工的人數(shù);(2)①由圖表數(shù)據(jù)及頻率和為1求得n,然后依次求p與m的值,并完成頻率分布直方圖;②填寫2×2列聯(lián)表,再由公式求得K2,則結(jié)論可求.
(1)抽取的女職工的人數(shù)為;
(2)①,
,;
直方圖如圖:
估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于的概率為:;
②列聯(lián)表如圖:
男職工 | 女職工 | 總計(jì) | |
平均運(yùn)動(dòng)時(shí)間低于 | 45 | 30 | 75 |
平均運(yùn)動(dòng)時(shí)間不低于 | 165 | 60 | 225 |
總計(jì) | 210 | 90 | 300 |
.
∴有以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一環(huán)保型企業(yè),為了節(jié)約成本擬進(jìn)行生產(chǎn)改造,現(xiàn)將某種產(chǎn)品產(chǎn)量與單位成本統(tǒng)計(jì)數(shù)據(jù)如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
單位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)試確定回歸方程;
(Ⅱ)指出產(chǎn)量每增加1000件時(shí),單位成本平均下降多少?
(Ⅲ)假定單位成本為70元/件時(shí),產(chǎn)量應(yīng)為多少件?
(參考公式:.)
(參考數(shù)據(jù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓O:x2+y2=9上的動(dòng)點(diǎn)P在x軸、y軸上的射影分別是P1,P2,點(diǎn)M滿足.
(1)求點(diǎn)M的軌跡C的方程;
(2)點(diǎn)A(0,1),B(0,﹣3),過(guò)點(diǎn)B的直線與軌跡C交于點(diǎn)S,N,且直線AS、AN的斜率kAS,kAN存在,求證:kASkAN為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足:,.
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)若等差數(shù)列滿足, ,問(wèn):與的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的五面體中,平面平面, ,,∥,,,.
(Ⅰ)求四棱錐的體積;
(Ⅱ)求證:∥平面;
(Ⅲ)設(shè)點(diǎn)為線段上的動(dòng)點(diǎn),求證:與不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生對(duì)《中華人民共和國(guó)交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問(wèn)卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對(duì)的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從答對(duì)題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對(duì)題數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+y-6=0,過(guò)直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為A,B,則四邊形PAOB面積的最小值為______,此時(shí)四邊形PAOB外接圓的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由數(shù)字1,2,3,4,5,6組成沒(méi)有重復(fù)數(shù)字的三位數(shù),偶數(shù)共有______個(gè),其中個(gè)位數(shù)字比十位數(shù)字大的偶數(shù)共有______個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會(huì)對(duì)校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測(cè),得到如下統(tǒng)計(jì)表:
噪音值(單位:分貝) | ||||||
頻數(shù) |
(1)根據(jù)該統(tǒng)計(jì)表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點(diǎn)值作代表).
(2)根據(jù)國(guó)家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過(guò)分貝,視為重度噪音污染;環(huán)境噪音值不超過(guò)分貝,視為度噪音污染.”如果把由上述統(tǒng)計(jì)表算得的頻率視作概率,回答下列問(wèn)題:
(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.
(ii)學(xué)校要舉行為期天的“漢字聽寫大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com