已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P為腰DC上的動(dòng)點(diǎn),則|2數(shù)學(xué)公式+3數(shù)學(xué)公式|的最小值為________.

7
分析:根據(jù)題意,設(shè)CD=a,以直線DA,DC分別為x,y軸建立平面直角坐標(biāo)系,則A(2,0),B(1,a),C(0,a),D(0,0),設(shè)P(0,b)(0≤b≤a),求出2+3,根據(jù)向量模的計(jì)算公式,即可求得|2+3|,利用完全平方式非負(fù),即可求得其最小值.
解答:解:如圖,以直線DA,DC分別為x,y軸建立平面直角坐標(biāo)系,設(shè)CD=a,
則A(2,0),B(1,a),C(0,a),D(0,0)
設(shè)P(0,b)(0≤b≤a)
=(2,-b),=(1,a-b),
∴2+3=(7,3a-5b)
∴|2+3|=|(7,3a-5b)|=≥7.
故答案為:7.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查向量在幾何中的應(yīng)用,以及向量模的求法,同時(shí)考查學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過(guò)A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)求證:FG∥面BCD.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過(guò)A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:FG∥面BCD;
(2)設(shè)四棱錐D-ABCE的體積為V,其外接球體積為V′,求V:V′的值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過(guò)A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使DE⊥EC.
(1)求證:BC⊥平面CDE;
(2)求證:FG∥平面BCD;
(3)求四棱錐D-ABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=2,AD=3,CD=1,點(diǎn)E、F分別在AD、BC上,滿足AE=
1
3
AD,BF=
1
3
BC
.現(xiàn)將此梯形沿EF折疊成如圖所示圖形,且使AD=
3

(1)求證:AE⊥平面ABCD;
(2)求二面角D-CE-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是邊長(zhǎng)為2的等邊三角形.
(1)證明:AB⊥PB;
(2)求二面角P-AB-D的大小.
(3)求三棱錐A-PBD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案