如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(1)求證:AB⊥DE;
(2)求直線EC與平面ABE所成角的正弦值.
分析:(1)利用等腰三角形的性質(zhì)、直角梯形的性質(zhì)、正方形的性質(zhì)、線面垂直的判定與性質(zhì)即可證明;
(2)利用面面垂直的性質(zhì)、線面角的定義即可得出.
解答:(1)證明:取AB中O,連接EO,DO.
∵EB=EA,∴EO⊥AB.
∵四邊形ABCD為直角梯形,AB=2CD=2BC,AB⊥BC,
∴四邊形OBCD為正方形,∴AB⊥OD.
又∵EO∩OD=O,∴AB⊥平面EOD.
∴AB⊥ED.
(2)∵平面ABE⊥平面ABCD,且AB⊥BC,
∴BC⊥平面ABE.
則∠CEB為直線EC與平面ABE所成的角.
設(shè)BC=a,則AB=2a,BE=
2
a
,∴CE=
3
a
,
在直角三角形CBE中,sin∠CEB=
CB
CE
=
1
3
=
3
3

即直線EC與平面ABE所成角的正弦值為
3
3
點評:熟練掌握用等腰三角形的性質(zhì)、直角梯形的性質(zhì)、正方形的性質(zhì)、線面、面面垂直的判定與性質(zhì)、線面角的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
12
.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州一模)如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省南昌市高三第二次模擬測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點,且EF∥AB,AD =2AE =2AB = 4AF= 4,將四邊形EFCD沿EF折起使AE=AD.

(1)求證:AF∥平面CBD;

(2)求平面CBD與平面ABFE夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省惠州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年寧夏銀川市賀蘭一中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=PB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案