【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、、成等比數(shù)列.
(1)求橢圓的離心率;
(2)判斷的形狀,并說明理由.
【答案】(1);(2)直角三角形,理由見解析
【解析】
(1)設(shè)橢圓的長軸、短軸、焦距分別為、、,由題設(shè)可得及,消得a、c齊次式,解得離心率;
(2)設(shè)橢圓的方程為,則,,,.方法一:利用向量,方法二:利用斜率,方法三:利用勾股定理,可得到是直角三角形.
(1)設(shè)橢圓的長軸、短軸、焦距分別為、、,
則、、.
由題設(shè)及,消得:即.
解得:或.
又,則.
(2)方法一:設(shè)橢圓的方程為,
則,,,.
∴,,
∴,∴,
故,∴是直角三角形.
方法二:設(shè)橢圓的方程為,
則,,,.
∴,,
∴,∴,
故,∴是直角三角形.
方法三:由條件得:在中,,,.
,
,
∴,
故,∴是直角三角形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線經(jīng)過點,傾斜角為,以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為曲線.
(Ⅰ)寫出直線的參數(shù)方程及曲線的普通方程;
(Ⅱ)求直線和曲線的兩個交點到點的距離的和與積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,判斷下列結(jié)論:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn).
其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接全國文明城市復(fù)檢,綿陽某中學(xué)組織了本校1000名學(xué)生進行社會主義核心價值觀、文明常識等內(nèi)容測試。統(tǒng)計測試成績數(shù)據(jù)得到如圖所示的頻率分布直方圖,已知,滿分100分.
(1)求測試分?jǐn)?shù)在的學(xué)生人數(shù);
(2)求這1000名學(xué)生測試成績的平均數(shù)以及中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線,則在平面內(nèi)一定不存在與直線平行的直線.
②若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi)不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi)一定存在與直線垂直的直線.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,點分別是的中點,點是的重心.
(1)證明:平面;
(2)若平面平面,,,,,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(),稱圓心在原點O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,使得,與橢圓C都只有一個交點,且,分別交其“衛(wèi)星圓”于點M,N,證明:弦長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com