設(shè)拋物線y2=8x的焦點(diǎn)為F,過(guò)F,的直線交拋物線于A(x1,y1),B(x2,y2),則y1y2=( 。
A、8B、16C、-8D、-16
分析:當(dāng)直線斜率不存在時(shí),直線方程為x=
p
2
,由
x=
p
2
y2=2px
得到交點(diǎn)坐標(biāo),從而得到y(tǒng)1•y2的值.
解答:解:當(dāng)直線斜率不存在時(shí),直線方程為x=
p
2
,
 
x=
p
2
y2=2px
得兩交點(diǎn)的坐標(biāo)(
p
2
,±p)
,
∵拋物線y2=8x,∴p=8,
∴y1•y2=-p2=-16.
故選D.
點(diǎn)評(píng):本題考查直線和拋物線的位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意拋物線性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍是( 。
A、[-
1
2
,
1
2
]
B、[-2,2]
C、[-1,1]
D、[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是
(-2,0)
;若過(guò)點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍是
[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線y2=8x的焦點(diǎn)為F,過(guò)點(diǎn)F作直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)E到y(tǒng)軸的距離為3,則AB的長(zhǎng)為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)Q點(diǎn)的直線l與拋物線有公共點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案