【題目】已知函數(shù)(其中是常數(shù),且),曲線處的切線方程為.

1)求的值;

2)若存在(其中是自然對數(shù)的底),使得成立,求的取值范圍;

3)設(shè),若對任意,均存在,使得方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

【答案】1.(2.(3

【解析】

1)求出處的導(dǎo)數(shù),利用斜率和函數(shù)值建立等式關(guān)系,則可求出的值. (2)由條件可知,原題等價于上有解,設(shè),即,求導(dǎo)求函數(shù)的最值,從而求出的取值范圍.3)通過求導(dǎo)分析的單調(diào)性和最值,分類討論求出的取值范圍.

1,由題知,且,

解得;

2)由(1)知,因為存在,使得,

,設(shè),則需,

,設(shè),則上恒成立,

單調(diào)遞增,又因為,所以上恒成立,

單調(diào)遞增,所以,

,解得;

3,

①當時,對任意,易知方程均僅有唯一解,

且當時,單調(diào)遞增,

時,,單調(diào)遞減,

故方程最多有兩個不同的實數(shù)解,所以不符合題意;

② 當時,若,則恒成立,單調(diào)遞增,

方程最多只有一個實數(shù)解,不符題意,

所以對任意,應(yīng)有,即,

此時,易知方程上有兩個不同的實數(shù)根,

因為,不妨取,則有,列表如下:

極大值

極小值

由表可知,的極大值為,

因為,所以

又因為,且,所以,

因為,所以必然存在

使得方程在區(qū)間上均有一個實數(shù)解,符合題意;

綜上所述,實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,的中點.

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重時會危及生命.隨著疫情的發(fā)展,自202025日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從212日開艙至38日閉倉,累計收治輕癥患者1056人.據(jù)部分統(tǒng)計該方艙醫(yī)院從226日至32日輕癥患者治愈出倉人數(shù)的頻數(shù)表與散點圖如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序號

1

2

3

4

5

6

出倉人數(shù)

3

8

17

31

68

168

根據(jù)散點圖和表中數(shù)據(jù),某研究人員對出倉人數(shù)與日期序號進行了擬合分析.從散點圖觀察可得,研究人員分別用兩種函數(shù)①分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為

1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類函數(shù),哪一類函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿足,參考數(shù)據(jù)表中

2根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點后三位)

33日實際總出倉人數(shù)為216人,按①中的回歸模型計算,差距有多少人?

(附:對于一組數(shù)據(jù),其回歸直線為

相關(guān)系數(shù)

參考數(shù)據(jù):

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且的前n項和為.若對任意的恒成立.

1)求數(shù)列,的通項公式;

2)若數(shù)列滿足問:是否存在正整數(shù),使得,若存在求出的值,若不存在,說明理由;

3)若存在各項均為正整數(shù)公差為的無窮等差數(shù)列,滿足,且存在正整數(shù),使得成等比數(shù)列,求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)國民經(jīng)濟新三步走的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度,某地區(qū)在2015年以前的年均脫貧率(脫貧的戶數(shù)占當年貧困戶總數(shù)的比)為70%,2015年開始全面實施精準扶貧政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加戶數(shù)占2019年貧困總戶數(shù)的比)及該項目的脫貧率見下表:

實施項目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

參加占戶比

45

45

10

脫貧率

96

96

90

那么2019年的年脫貧率是實施精準扶貧政策前的年均脫貧率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類,是指按一定規(guī)定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉(zhuǎn)變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用.2019625日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實現(xiàn)公共機構(gòu)生活垃圾分類全覆蓋.某機構(gòu)欲組建一個有關(guān)垃圾分類相關(guān)事宜的項目組,對各個地區(qū)垃圾分類的處理模式進行相關(guān)報道.該機構(gòu)從600名員工中進行篩選,篩選方法:每位員工測試,,三項工作,3項測試中至少2項測試不合格的員工,將被認定為暫定,有且只有一項測試不合格的員工將再測試,兩項,如果這兩項中有1項以上(含1項)測試不合格,將也被認定為暫定,每位員工測試,,三項工作相互獨立,每一項測試不合格的概率均為

1)記某位員工被認定為暫定的概率為,求;

2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構(gòu)的預(yù)算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預(yù)算?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財產(chǎn)品的選擇情況,隨機抽取1100名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:

分組

頻數(shù)(單位:名)

使用“余額寶”

使用“財富通”

使用“京東小金庫”

40

使用其他理財產(chǎn)品

60

合計

1100

已知這1100名市民中,使用“余額寶”的人比使用“財富通”的人多200名.

(1)求頻數(shù)分布表中,的值;

(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為,“京東小金庫”的平均年化收益率為,有3名市民,每個人理財?shù)馁Y金有10000元,且分別存入“余額寶”“財富通”“京東小金庫”,求這3名市民2018年理財?shù)钠骄昊找媛剩?/span>

(3)若在1100名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機選取2人,求“這2人都使用‘財富通’”的概率.

注:平均年化收益率,也就是我們所熟知的利率,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓P恒過定點,且與直線相切.

(Ⅰ)求動圓P圓心的軌跡M的方程;

(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.

查看答案和解析>>

同步練習冊答案